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Abstract This paper presents a hybrid evolutionary method for identifying a system of ordinary
differential equations (ODEs) from the observed time series. In this approach, the tree-structure
based evolution algorithm and particle swarm optimization (PSO) are employed to evolve the ar-
chitecture and the parameters of the additive tree models for the problem of system identification.
Experimental results on modeling biochemical system show that the proposed method is more fea-
sible and effective than other related works.
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1 Introduction
Many complex systems and nonlinear phenomena changing over time exist in physics,

chemistry, economics, bioinformatics etc. Weather forecasting, quantum mechanics, wave
propagation, stock market dynamics and identification of biological systems are exam-
ples [1]. The system of differential equations is a powerful and flexible model, which
can describe complex relations among components [3]. So a lot of problems in these
fields can be expressed by the ordinary differential equations (ODEs). Thus the differen-
tial equation identification is very important, and various methods have been proposed to
infer ODEs during the last few years. The methods can be classified into two categories:
one is to identify the parameters of the ODEs and another is to identify its structure. The
former is exemplified by the Genetic Algorithms (GA), and the latter is by the Genetic
Programming (GP). Cao and his colleagues use GP to evolve the ODEs from the ob-
served time series in 1999 [2]. His main idea is to embed the genetic algorithm (GA) in
genetic programming (GP), where GP is employed to discover and optimize the model’s
structure, and GA is employed to optimize the model’s parameters. They show that the
GP-based approach introduces numerous advantages over the most available modeling
method. H.Iba propose the ODEs identification method by using the least mean square
(LMS) along with the ordinary GP [3]. Some individuals are created at some intervals of
generations and replace the worst individuals in the population by the LMS. I.G.Tsoulos
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and I.E.Lagar propose a novel method based on grammatical evolution [1]. This method
forms generations of trial solutions expressed in an analytical closed form.

In 2005, we have proposed a new representation scheme of the evolved additive tree
models for the system identification, especially the reconstruction of polynomials and
the identification of linear/nonlinear systems. This model is robust, and it is easy to be
analyzed by traditional techniques. This is because the evolved additive tree model is
simple in form and is very similar with the traditional representation of the system to be
reconstructed [10].

In this paper, we propose a hybrid evolutionary method, in which the tree-structure
based evolution algorithm and particle swarm optimization (PSO) are employed to evolve
the architecture and the parameters of the additive tree models for system of ordinary dif-
ferential equation identification. The partitioning [4] is used in the process of identifying
the system’s structure. Each ODE in the ODEs is separately inferred.

The paper is organized as follows. In Section 2, we describe the details of our method.
In section 3, the four examples are performed to validate the effectiveness and precision
of the proposed method. Conclusions are reported in Section 4.

2 Method
2.1 The models’ structure optimization
2.1.1 The additive tree model

We use the tree-structure based evolution algorithm to evolve the architecture of the
additive tree models for the system of ordinary differential equation identification. For
this purpose, we encode the right-hand side of a ODE into an additive tree individual
(Figure.1).

Figure 1: Example of a ODE which encoded into an additive tree model.

Two instruction / operator sets I0 and I1 are used to generate the additive tree.
I0 = {+2,+3, ...,+N}
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I1 = F ∪T = {∗,/,sin,cos,exp,rlog,x,R}
Here F = {∗,/,sin,cos,exp,rlog} and T = {x,R} are respectively the function sets

and the terminal sets, where +N ,∗,/,sin,cos,exp,rlog,x, and R denote addition, mul-
tiplication, division, sine, cosine, exponent, logarithm, system inputs, random constant
number taking N, 2, 2, 1, 1, 1, 1, 0 and -1 arguments respectively [10].

N is an integer number(the maximum number of the ODE terms), I0 is the instruction
set of the root node, and the instructions of other nodes are selected from the instruction
set I1. Note that if the right-hand sides of ODEs are the polynomial, the instruction set I1
can be defined as I1 = {∗2,∗3, ...,∗n,x1,x2, ...,xn,R}.

We infer the system of ODEs with partitioning. Partitioning ( equations that describe
each variable of the system can be inferred separately) reduce the research space signif-
icantly. When using partitioning, a candidate equation for a signal variable is integrated
by substituting references to other variables with data from the observed time series [4].
Thus each right hand side of the ODE system is evolved independently in parallel.

2.1.2 Evolving structure of the equation
Finding an optimal or near-optimal additive tree is an evolutionary process. In this

study, the additive tree operators are used as follows.

(1) Mutation. In this paper, we choose three mutation operators to generate offsprings
from the parents. These mutation operators are as following:
1) Change one terminal node: randomly select one terminal node in the tree and
replace it with another terminal node which is generated randomly.
2) Grow: select a random leaf in the hidden layer of the tree and replace it with a
newly generated subtree.
3) Prone: randomly select a function node in a tree and replace it with a terminal
node selected in the set T .

(2) Crossover. First two parents are selected according to the predefined crossover
probability Pc. And select one nonterminal node in the hidden layer for each addi-
tive tree randomly, and then swap the selected subtree.

(3) Selection. EP-style tournament selection is applied to select the parents for the
next generation. This is repeated in each generation until the predefined number of
generations or the best structure is found.

2.2 Parameter optimization of models using PSO
According to Fig.1, we check the parameters in equations, namely counting the num-

ber ni(i=1,2,...,N, N is the number of the equations).
According to ni, the particles are randomly generated initially. Each particle xi rep-

resents a potential solution. A swarm of particles moves through space, with the moving
velocity of each particle represented by the velocity vector vi. At each step, each particle
is evaluated and keep track of its own best position, which is associated with the best fit-
ness it has achieved so far in a vector Pbesti. And the best position among all the particles
is kept as Gbest [6]. A new velocity for particle i is updated by

vi(t +1) = vi(t)+ c1r1(Pbesti − xi(t))+ c2r2(Gbest(t)− xi(t)) (1)
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Table 1: Parameters for experiments

Exp1 Exp2 Exp3 Exp4
Population size 20 50 20 300
Generation 50 100 50 100
Crossover rate 0.7 0.7 0.7 0.7
Time series 1 1 1 10
Stepsize 0.01 0.01 0.05 0.01
Data point 30 100 48 10

where c1 and c2 are positive constant, and r1 and r2 are uniformly distributed random
number in [0,1]. Based on the updated velocities, each particle changes its position ac-
cording to the following equation:

xi(t +1) = xi(t)+ vi(t +1) (2)

2.3 Fitness definition
The fitness of each variable is defined as the sum of squared error(SSE) :

f itness(i) =
T−1

∑
k=0

(
x′i(t0 + k∆t)− xi(t0 + k∆t)

)2 (3)

where t0 is the starting time, △t is the step size, T is the number of the data point,
xi(t0+k△t) is the actual outputs of the i-th sample, and x′i(t0+k△t) is ODEs outputs. All
outputs are calculated by using the approximate forth-order Runge-Kutta method. When
calculating the outputs, some individuals may cause overflow. In this case, the individual
which fitness becomes large will be weeded out from the population.

2.4 Summary of the proposed algorithm
The optimal design of each ODE can be described as follows.

(1) Randomly create an initial population(the structure and its corresponding parame-
ters).

(2) Structure optimization is achieved by the additive tree variation operators, which is
described in subsection 2.1.

(3) At some interval of generations, select the better structures to optimize parameters.
Parameter optimization is achieved by PSO as described in subsection 2.2. In this
process, the structure is fixed.

(4) If satisfactory solution is found, then stop; otherwise go to step (2).

3 Experimental results
We have prepared four tasks to test the effectiveness of our method. Experimental

parameters are summarized in Table 1.
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3.1 Example 1: E-cell simulation
In this part of the simulation, we use data of a metabolic network, called the E-cell sys-

tem (a part of the biological phospholipid pathway). The network includes two reactions
catalyzed by Glycerol kinase (EC2.7.1.30) and Glycerol-1-phosphatase (EC3.1.3.21). The
network’s external input is ATP [11]. Glycerol and sn-Glycerol-3phosphate are produced
and consumed by the two reactions [11]. This network can be approximated as

⎧
⎨
⎩

.
X1 =−10.32X1X3
.

X2 = 9.72X1X3 −17.5X2
.

X3 =−9.7X1X3 −17.5X2
.

X4 =−2.3X1

(4)
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Figure 2: Time series of the acquired model.

The last equation is added to the model for testing whether the proposed method could
produce false positives. The time series was generated for the above set of reactions with
initial conditions {1.2, 0.1, 0.1, 0.1 } for {X1, X2, X3,X4}. Experimental parameters
for this task are shown in Table 1. The used instruction set I0 = {+2,+3,+4,+5} and
I1 = {∗,X1,X2,X3,X4}. We have acquired the system of eq.(6), which gave the sums of
squared errors as (X1, X2, X3,X4)=(4.0× 10−12, 9.0× 10−12, 3.0× 10−12, 3.6× 10−12).
The time series generated is shown in Fig.3 along with that of the target.

The resulting model using our method is listed in Table 2. Comparing with the true
value, we can confirm that our generating system is almost identical to the target ODEs.
We also have made further compare to examine the effectiveness of our proposed ap-
proach with GP+RLS and GP+KF. Obviously, the parameters of our model are closer to
the targeted model than GP+RLS and GP+KF. And the GP+KF needs the 1000 individu-
als firstly. Our initial population size is only 20.

3.2 Experiment 2: Three-species Lotka-Volterra model
The Lotka-Volterra model describes interactions between two species, i.e., predators

and preys, in an ecosystem [7]. The following ODEs represent a three-species Lotka-
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Table 2: Obtained Parameters by GP+RLS [13], GP+KF [12] and Our Proposed Method

true value GP+RLS GP+KF Our Method
w11 -10.32 -9.64 -10.34 -10.319973
w21 9.72 13.42 8.87 9.720075
w22 -17.5 21.8 -17.42 -17.500157
w31 -9.7 -5.63 -9.74 -9.699986
w32 17.5 12.64 17.15 -17.500034
w41 -2.3 -2.14 -2.24 -2.299913

Volterra model: ⎧
⎨
⎩

.
X1 = (1−X1 −X2 −10X3)X1
.

X2 = (0.992−1.5X1 −X2 −X3)X2
.

X3 = (−1.2+5X1 +0.5X2)X3

(5)

This system models the introduction of third species, i.e., a predator, into a two-
species system of competition, i.e., preys. More precisely, X1 and X2 are the number
of preys competing with each other, whereas X3 represents the number of predators. [11]
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Figure 3: Time series of the acquired model for Lotka-Volterra model.

The time series are generated for the above set of ODEs with initial conditions {1.0,
2.0, 0.1 } for {X1,X2,X3}. The generated time series are shown in Fig.4. Experimental pa-
rameter for this task are shown in Table 1. The used instruction set I0 = {+3,+4,+5,+6}
and I1 = {∗,X1,X2,X3}. We have acquired the system of eq.(6), and note that the two sys-
tems of ODEs, i.e., eqs.(5) and eqs.(6), are almost identical except for slightly different
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coefficients. The sums of squared errors of ODEs are 8.1×10−11.
⎧
⎨
⎩

.
X1 = 1.00122X1 −1.0019X1

2 −0.9991X1X2 −10.0093X1X3
.

X2 = 0.9934X2 −1.5008X1X2 −0.9995X2
2 −1.001X2X3

.
X3 =−1.1988X3 +5.001X1X3 +0.4984X2X3

(6)

We conduct further experiments with the above model to compare with the perfor-
mance of the Multi Expression Programming (MEP), where the structure of the ODE is
inferred by the Multi Expression Programming (MEP) and the parameters of the ODE
are optimized by using particle swarm optimization (PSO). With the same population
size and iteration, the SSE of MEP is 7.431× 10−7, and the SSE of our method is only
1.936×10−9. So our proposed method performs better than MEP in precision.

3.3 Experiment 3: bimolecular reaction
A bimolecular reaction equations [14]are described below:

X2 +X1
K1−→ X3 (7)

X3
K2−→ X4 +X2 (8)

The corresponding rate equations for all the four species are as follows:
⎧
⎨
⎩

.
X1 =−2X1X2
.

X2 =−2X1X2 +1.2X3
.

X3 = 2X1X2 −1.2X3
.

X4 = 1.2X3

(9)

The time series are generated for the reactions with initial conditions{1,0.1,0,0}for
{X1,X2,X3,X4} which is shown in Fig.4 along with targeted time series. Experimental pa-
rameters for this task are shown in Table 1. The used instruction set I0 = {+2,+4,+5,+6}
and I1 = {∗,X1,X2,X3,X4}. We have acquired the system of eq.(11), which give the sums
of squared errors as (X1,X2,X3,X4)=( 1.0×10−11, 5.7×10−12, 3.0×10−12, 1.5×10−11).

⎧
⎨
⎩

.
X1 =−1.9920X1X2
.

X2 =−1.1983X1X2 +1.9920X3
.

X3 = 1.9920X1X2 −1.1983X3
.

X4 = 1.1983X3

(10)

Compared with eq.(10) [14], our predicted model and parameters are closer to the
target system. The method is executed with time series with different time step size and
with different initial condition. And the results have scarcely any change.

⎧
⎨
⎩

.
X1 =−1.99999X1X2
.

X2 = 1.20000X3 −1.99999X1X2
.

X3 =−1.20000X3 −2.00000X1X2
.

X4 = 1.99999X3

(11)
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Figure 4: Time series of the acquired model for bimolecular reaction.

Table 3: Parameters of the genetic network system

i αi gi1 gi2 gi3 gi4 gi5 βi hi1 hi2 hi3 hi4 hi5
1 5.0 1.0 -1.0 10.0 2.0
2 10.0 2.0 10.0 2.0
3 10.0 -1.0 10.0 -1.0 2.0
4 8.0 2.0 -1.0 10.0 2.0
5 10.0 2.0 10.0 2.0

3.4 Experiment 4: a gene regulatory network
Figure 5 shows the example of a gene regulatory network. This type of network can

be modeled by a so-called S-system model [15]. This model is based on approximating
kinetic laws with multivariate power-law functions. The model consists of n nonlinear
ODEs and the generic form of equation i is given as follows:

X
′
i (t) = αi

n

∏
j=1

X
gi j
j (t)−βi

n

∏
j=1

X
hi j
j (t) (12)

where X is the vector of dependent variable, α and β are vectors of non-negative rate
constants and g and h are matric of kinetic orders [15].

The parameters of the genetic network are given in Table 3. And the time series con-
sists of 10 different experiments which initial conditions are created randomly with 11
uniformly sampled data-points per variable. The used instruction set I0 = {+2,+3,+4},
F = {∗,ax}, and we identify the correct model(parameters in the Table 4) with Intel
Pentinum Dual 2.00GHz processor and 1GB memory in 1.9 h averagely. Shinichi Kikuchi [15]
obtained one false positive interaction (h53 = 0.7) using 70 h on a super-computer with
a cluster of 1G processors (Pentium 3, 933 MHz). Obviously our approach is more ac-
curate and significantly faster compared with the genetic algorithm approach by Shinichi
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Table 4: Parameters estimated by our method

i αi gi1 gi2 gi3 gi4 gi5
1 5.0 0.9528 -0.9948
2 10.0 1.9984
3 10.0 -0.9978
4 7.9579 2.0 -1.047
5 10.0 1.9943

βi hi1 hi2 hi3 hi4 hi5
1 10.0 1.8775
2 10.0 2.0
3 10.0 -0.9988 1.9988
4 9.9524 2.0
5 10.0 2.0

Kikuchi.
The above four experiments have been used widely to test the performance of the

methods inferring the ordinary differential equations for identification of biochemical sys-
tems in the previous research [11, 12, 13, 14, 15]. From our experimental results, we can
see that not only the linear differential equation but also the nonlinear differential equation
could be correctly identified. And compared with the general methods, our method not
only can identify correctly the biochemical systems especially parameter through the very
short iterative times, but also needs the less initial population. So our proposed method
works well for modeling biochemical systems.

4 Conclusion
In this paper, a hybrid evolutionary method of evolving ODEs is proposed. By sev-

eral experiments, we succeed in creating the systems of ODEs which are very close to
the target systems. The experimental results show the effectiveness and veracity of the
proposed method. The proposed method has two advantages. (1) The evolved additive
tree model is robust and easy to analyze by using traditional techniques. This is because
the evolved additive tree model is simple in form and is very similar with the traditional
representation of the system. So we can acquire the best structure of the ODE only by a
small population. (2) With partitioning, each ODE of the ODEs can be inferred separately
and the research space reduces rapidly, so we can acquire the best system very fast.

In the future work, we will apply our approach to solve some real problems in physics,
chemistry, economics, bioinformatics etc. Weather forecasting, quantum mechanics, stock
market dynamics and identification of biological systems are some examples.
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