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Abstract
Community detection is one of the most important problems in complex network research. In

recent years, great efforts have been devoted to this problem in term of evaluating the resulting
community structure. Our previous work has shown that in addition to the resolution limit of Q,
both Q and D suffer from a more serious limitation, termed as extra weak community phenomenon,
i.e. some derived communities do not satisfy even the weak community definition. In this paper, we
provide a constrained optimization model to overcome extra weak community phenomenon. With
an improved simulated annealing algorithm, we solve the constrained optimization model for both
Q and D, and then use our new method in several practical community detection problems. The ex-
perimental results show that the new method can not only partition large networks into communities
properly but also ensure that all resulting communities at least satisfy the weak community defini-
tion. In addition, we find that constrained optimization of Q finds fewer but large communities,
while constrained optimization of D takes the network apart more detailed.

Keywords Extra Weak Community; Constrained Optimization Model; Community Detection

1 Introduction
Community detection is an important problem in complex network research. As being

widely assumed that most networks, such as Internet, social networks, biological networks
and so on, show “community structure” i.e., groups of vertices that have a high density
of edges within them, and a low density of edges between them [14]. Uncovering the
underlying community structure helps to cartographically represent and mine important
knowledge from the complex graphical frameworks. For example, communities of world
wide web represent the groups of websites with similar topics. They are used to improve
search engines, filter contents, and analyze relationships within and among different top-
ics [4]. Communities in biological networks usually represent functional modules. They
can be used to predict protein function, explain diseases mechanism, and obtain valuable
biological insights [9].
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Figure 1: Illustration of the theoretical analysis for modularity measures Q and D by
discrete convex programming on two exemplary networks. (a1)-(a3): the diagram for
the ring of N lumps, the properties of the two stage optimization problem (QI and DI ,
QII and DII), and the analytical solutions. The horizontal axis (in red) in (a3) denotes
the value of parameter lbw/lin. When lbw/lin < 1/(N − 1), both Q and D can identify
the N lumps as communities. When lbw/lin > 1/3, both Q and D fail to identify the N
communities. When 1/(N−1)< lbw/lin < 1/3, D can still identify N communities while
Q cannot. (b1)-(b3): the diagram for Ad hoc net with N lumps, the properties of the
two stage optimization problem, and the analytical solutions. The vertical axis (in red) in
(b2) denotes the parameter lbw/lin. The property of QI and QII differs in the critical point
lbw/lin = 2. The horizontal axis (in red) in (b3) also denotes the value of parameter lbw/lin.
When lbw/lin < 2/(N−1), both Q and D can identify the N lumps as communities. When
lbw/lin > 2, both Q and D identify the whole network as a single communities. When
2/(N− 1) < lbw/lin < 2, D identify a single community while Q identify more than one
communities. The properties of optimization models (QI , QII ,DI , and DII) to maximize
the modularity measures Q and D on two exemplary networks can be found in Table S1
of Supplementary Materials 2. The detailed analytical solutions are presented in Table S2
of Supplementary Materials 2 (http://www.aporc.org/doc/wiki/ModularityOptimization).
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In recent years, great efforts have been devoted to this problem in term of evaluating
the resulting community structure. Newman and Girvan defined a modularity function
Q to evaluate the quality of a particular division of a network [14]. Given a network
G = {V,E}, where V and E represent the set of vertexes and the set of links respectively,
and its division P = ({V1,E1},{V2,E2}, ⋅ ⋅ ⋅ ,{Vn,En}), where ∪n

i=1Vi =V , the modularity
measure Q is defined by

Q =
n

∑
i=1

Qi =
n

∑
i=1

[
∣Ei∣
∣E∣ −

(
d(Vi)

d(V )

)2
]

(1)

where ∣E∣ represents the total number of edges in V , ∣Ei∣ represents the number of edges
in Vi, d(V ) is the total degree of vertexes in V , and d(Vi) is the total degree of vertexes
in Vi. For each Qi, the first term represents the observed percentage of edges inside the
community, while the second one is its expected value. Generally, a larger Q value cor-
responds to a more reasonable division, so maximizing Q has been a widely accepted
method for detecting community structure of complex networks [9].

However, Q was recently found to suffer from resolution limit, i.e. optimizing Q may
fail to identify communities smaller than a scale depending on the total size of the network
and on the degree of connections among the communities [5]. To overcome this problem,
Li et al proposed another quantitative measure D. Based on the concept of graph density,
it is defined by

D =
n

∑
i=1

Di =
n

∑
i=1

(
2Ei− Ēi

∣Vi∣

)
(2)

where Ēi means the number of edges from the ith community to others. Optimization of
D does not show the resolution limit that Q suffers from on some examples and improves
the quality of community detection [11].

Recently, Radicchi et al. proposed an explicit community definition [16]. In their
work, the weak community is defined as that if a subgraph Gi = {Ei,Vi} is a community
it should satisfy

2Ei > Ēi.

This definition gave a basic rule to assess whether a group of nodes are community or not.
Based on this definition, Zhang et al. found that in addition to the resolution limit of Q,
both Q and D suffer from a more serious limitation, i.e. some derived communities do not
satisfy even the weak community definition, which means that these communities, termed
as extra weak communities, have sparser connection within them than between them [18].
This phenomena is also called “misidentification” according to the weak community def-
inition. To illustrate this phenomena, a discrete convex optimization framework is used in
two artificial networks. One is a ring of dense lumps which consists of N (N ≥ 4) dense
lumps each with m nodes. The other one is a kind of generation of the ad hoc network dis-
cussed in [15, 3], which also consist of N dense subgraphs. Under the assumption that all
the links in Gs, s = 1,2, ⋅ ⋅ ⋅ ,N, for these two exemplary networks are evenly distributed,
the two stages of optimization process for both Q and D can be simplified as discrete
convex optimization problems. With the analytical solutions of the discrete convex opti-
mization problems, we compare these two modularity measures in terms of their ability
to detect known communities and the extent of misidentification phenomenon in terms
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of the network topology structure, i.e., a set of network parameters. The property of the
two-stage optimization models with respect to network parameters is illustrated in Figure
1, and the detailed induction can be found in [17, 18].

In this short paper, we focus on the problem pointed out by [18], and then propose
a constrained optimization model to improve the performance of both Q and D. Further-
more, we discuss some applications of our new improved methods in several commu-
nity detection problems. This new methods can ensure all resulting communities at least
satisfy the weak definition. In addition, as a byproduct of theoretical analysis and real
networks experiments, we found that there is some difference between constrained opti-
mization of Q and D. Constrained optimization of Q finds fewer but large communities,
while constrained optimization of D takes the network apart more detailed.

2 A constrained optimization model to eliminate extra
weak communities

Modularity function Q and modularity density D are widely used to evaluate the qual-
ity of a particular division of a network. However, both Q and D can not ensure all of the
derived communities satisfy even the weak community definition. In order to overcome
this problem and partition the network reasonable, i.e., each community in the partition
satisfies the weak definition, it is natural to build the following constrained optimization
problems based on the modularity measures.

For Q, we have

max ∑n
i=1 Qi

s.t. 2∣Ei∣> Ēi, i = 1,2, ⋅ ⋅ ⋅ ,k
(3)

For D, we have

max ∑n
i=1 Di

s.t. 2∣Ei∣> Ēi, i = 1,2, ⋅ ⋅ ⋅ ,k
(4)

Either problem is difficult to solve due to the fact that the space of possible partitions
grows exponentially with respect to the size of network. In order to solve them we use
the simulated annealing algorithm. Simulated annealing (SA) [10] is a generic proba-
bilistically heuristic method for the global optimization problem, namely finding a good
approximation to the global minimum of a given function in a large search space. It is to
simulate the cooling process of the heated metal. From an arbitrary initial state the SA
reaches the next state with possible minimal energy. At each step, the SA considers some
neighbor s′ of the current state s, and probabilistically decides either moving the system
to state s′ or staying in state s. The probability of making the transition from the cur-
rent state s to a candidate new state s′ is specified by an acceptance probability function
P(e,e′,T ), that depends on the energies e = E(s) and e′ = E(s′) of the two states, and also
the temperature T .

We solve the constrained optimization model by improving the simulated annealing
technique, that has been used to solve the Q optimization in [9]. Specifically, we always
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set the whole network as the initial solution. At each temperature, we provide f n2 node
movements from one community to another community, where n is the number of nodes in
the network and f is a coefficient and often taken as 1. It is noted that the node movement
must enable the two newly created communities to satisfy the weak definition, otherwise
the movement is not accepted. Meanwhile we also provide f n collective movements,
which include merging two communities and splitting a community. It is noted that the
split must enable the two split communities all satisfy the weak definition, otherwise
the split is not accepted. After the movements are evaluated at each temperature, the
temperature is decreased with a constant coefficient.

The improved algorithm and software can be found on the webpage: http://www.aporc.
org/doc/wiki/ModularityOptimization. Using the improved algorithm, we correctly solved
several examples both in artificial and in real biological and social networks in which extra
weak communities are misidentified by using the original algorithm.

3 Experimental results on artificial and real networks
Then we used our new method for modularity measures Q and D on the exemplary

networks. Although these networks have very special topology structures, the conclusion
obtained on them can provide insights into general complex networks.

3.1 Artificial networks
The first numerical example is a set of computer-generated networks [6] which have

been widely used to benchmark community detection algorithms. Each network has 128
nodes, which are divided into 4 communities each with 32 nodes. Edges are placed ran-
domly with given probabilities so as to keep the average degree of a node to be 16. The
average edge connection of each node to nodes of other communities is denoted by kout .
For each kout , 10 random ad hoc networks are generated. Then, the partition of each
network is obtained by optimizing modularity measures Q and D respectively by a sim-
ulated annealing procedure. Figure 2 compares the misidentification problem in both Q
and D, where the community numbers (average value over 10 networks) given by the bar
plot include both communities satisfying the weak definition and the communities failing
to satisfy the weak definition. From this result we can see that for the ad hoc networks,
modularity density D has no misidentification phenomenon, whereas when kout > 8, some
communities detected by Q do not satisfy the weak community definition. In other words,
Q identifies some subgraphs with inner links even less than half of outward links as com-
munities, which violates our basic community definition. When we apply our new con-
strained model to partition the networks, the misidentification problems are avoided.

3.2 Real networks
We further extend our theoretical analysis and show the performance of our new con-

strained model by several examples of real networks. These networks include some well
studied complex networks such as metabolic network of C. elegans [2], dolphin network
[12], email network [8], football network [6], jazz musician network [7], political book
network [1], and scientific collaboration networks [13]. In addition, we constructed sev-
eral bio-molecular networks such as transcriptional regulatory network and protein inter-
action network to study their modularity properties. The simulated annealing procedure
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Figure 2: Comparison of Q and D in terms of misidentification on 4-community ad hoc
networks. (a) The community numbers detected by optimizing modularity density D
(average value over 10 networks). (b) The community numbers detected by optimizing
modularity function Q (average value over 10 networks). (c) The community numbers de-
tected by optimizing modularity density D with constrains. (d) The community numbers
detected by optimizing modularity function Q with constraints.

is used here. The statistics of the network and the partition results are presented in Table
1 and Table 2. We find that for most of small and sparse networks, both modularity mea-
sures Q and D work well and all of identified communities satisfy weak definition. But
when the studied networks get larger and denser, modularity measures Q and D obviously
suffer from the misidentification problem. However, the misidentification phenomena are
not appeared through the constrained optimization model which are shown in Table 1 and
Table 2. Besides, comparing table 1 and table 2, we find that there is some difference
between constrained optimization of Q and D. Constrained optimization of Q finds fewer
but large communities, while constrained optimization of D takes the network apart more
detailed. The main reason for the difference is that Q focuses on the global characters of
networks, while D focuses on the local characters. In particular, for each community in
formula (1), the value of Qi is related to the total number of edges in the whole network,
but every Di in formula (2) is independent from the whole network.

A typical example is the jazz musician network [7] which is a social network to de-
scribe the collaboration among jazz bands. The data are from The Red Hot Jazz Archive
database which stores 198 bands that performed from 1912 to 1940 with 1275 jazz mu-
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Table 1: Experimental results on the real networks by optimizing Q. The misidentification
phenomena are highlighted in bold.

Direct optimization Considering the weak definition constraints

through constrained model

Network name Q Value Number of Satisfying Q Value Number of Satisfying

communities weak definition communities weak definition

C. celegans 0.45 9 9 0.42 7 7

metabolic [2]

dolphins [12] 0.53 4 4 0.52 4 4

email [8] 0.57 10 10 0.57 9 9

football [6] 0.60 9 9 0.60 10 10

jazz [7] 0.44 4 3 0.44 3 3

karate [11] 0.42 4 4 0.40 4 4

politics books [1] 0.53 4 4 0.53 4 4

scienceA [13] 0.75 7 7 0.75 8 8

Yeast TRN 0.48 14 12 0.47 13 13

Yeast TFR 0.35 6 3 0.22 3 3

Table 2: Experimental results on the real networks by optimizing D. The misidentification
phenomena are highlighted in bold.

Direct optimization Considering the weak definition constraints

through constrained model

Network name D Value Number of Satisfying D Value Number of Satisfying

communities weak definition communities weak definition

C. celegans 30.25 15 15 29.76 16 16

metabolic [2]

dolphins [12] 11.73 5 5 11.96 5 5

email [8] 63.16 31 30 60.03 28 28

football [6] 43.73 11 11 44.39 11 11

jazz [7] 52.84 4 3 52.03 4 4

karate [11] 7.85 3 3 7.85 3 3

politics books [1] 21.86 7 7 20.05 5 5

scienceA [13] 28.30 16 16 28.31 16 16

Yeast TRN 15.78 15 14 19.25 23 23

Yeast TFR 11.50 4 4 11.66 4 4
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Figure S1-5: Misidentification in optimization of modularity measures Q in the jazz musician network.
In this network, the nodes denote the jazz bands and edges represent jazz musician sharing relationships.
In reality, there are three communities (white musician community, black musician community located
in New York, and black musician community located in Chicago) which represent black/white racial
segregation and cities that bands recorded in. We use modularity measures Q to partition this network.
The communities with different node shapes are identified by Q based on direct optimization, and com-
munities with different colors are detected by Q based on optimization model (9). The results show that
Q find a community unsatisfying the weak definition. The misidentified community by Q (triangles)
has 4 nodes with fewer inner links than outer links. However the optimization model (9) can correctly
partition the network.

9

Figure 3: Misidentification in optimization of modularity measures Q in the jazz musician
network. We use modularity measures Q to partition this network. The communities with
different node shapes are identified by Q based on direct optimization, and communities
with different colors are detected by Q based on constrained optimization model.

sicians [7]. In the jazz musician network, the bands are represented by nodes and two
bands with at least one shared musician are linked by an edge. Due to the black/white
racial segregation and the cities that bands recorded in, the network can be divided into
three communities in reality. The community detection results by Q and D are shown in
Table 1 and 2. We found that both Q and D partition this network into four communities
with one misidentification. We draw the partition results of Q in Figure 3. The commu-
nity misidentified by Q (triangles in Figure 3) has 4 nodes and has fewer inner links than
outer links. However using the constrained model we can obtain the correct partition.

4 Conclusions
Community detection plays a fundamental role in complex network studies. We have

given a way to overcome one serious problem in community detection, i.e. the occurrence
of extra weak community or called misidentification. In this paper, we mainly show
the advantage of constrained optimization model over un-constrained one by avoiding
unreasonable extra weak community. In addition, as a byproduct, we found that there is
some difference between constrained optimization of Q and D. Constrained optimization
of Q finds fewer but large communities, while constrained optimization of D takes the
network apart more detailed.
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