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Abstract The aim of this paper is to investigate several inherited properties of convexity for 
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1 Introduction  

Since it will be very common for parallel translation of function ( )f x  in the 

deciding space to non-negative quadrant
p

R


, then as for pi ,,1  , define the 

point 

 Xxxfy
ii
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

|)(inf  

where 
i

y

   and X  be a nonempty compact convex subset of a topological 

vector space. It is the Tchebyshev norm minimum method to minimize norm 

| ( ) |f x y  by taking this point or the point y  of y ≦ y


 as the criterion point. 

That is 
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where | ( ) |
i i

f x y  is available for assuming y  of y ≦ y


to be very small. If 

absolute value is taken off, then Tchebyshev scalarization function can be written as 

follows 
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For 
p

w R


 , Tchebyshev scalarization problem ( )
w

R  can be rewritten as 

follows 

'
( )

w
R

m inim ize   z  

subject to   ( ( ) ) ,    1, ,

                  { | ( ) 0}

i i i

n

w f x y z i p

x X x R g x




  


   

 

where 
1

m ax{ ( ( ) )}
ii i

i p

w f x y
 

 ≦ z  ))((
iii

yxfw  ≦ z , 1, ,i p . 

In this paper, we introduced two types of characteristic functions by using 

Tchebyshev scalarization, and defined four types of scalarization functions by 

characteristics of set-valued maps. The aim of this paper consists of two parts: one 

is concerned with inherited properties of set-valued maps, another is scalarization 

algorithms for set-valued maps.   

Firstly, we presented certain results on inherited properties of convexity and 

semi- continuity. Convexity and lower semi-continuity of real-valued maps are useful 

properties for analysis of optimization problems, and they are dual concepts to 

concavity and upper semi-continuity, respectively. These properties are related to the 

total ordering of 
n

R . We consider certain generalizations and modifications of 

convexity and semi-continuity for set-valued maps in a topological vector space with 

respect to a cone preorder in the target space for generalizing the classical Fan’s 

inequality [1, 3, 4]. These properties are inherited by special scalarization functions: 

                       i n f { ( , ; ) : ( ) }
C

h x y k y F x


                         (1.1) 

and 

                       s u p { ( , ; ) : ( ) }
C

h x y k y F x


                        (1.2) 

where ( , ; ) inf{ : ( )}
C

h x y k t y tk C x


   , ( )C x  is a closed convex cone with 

nonempty interior, x  and y  are vectors in two topological vector spaces ,E Y , 

and int ( )k C x . Note that ( , ; )
C

h x k  is positively homogeneous and subadditive 

for every fixed x X  and int ( )k C x . Another function 

( , ; ) ( , ; )
C C

h x y k h x y k


    sup{ : ( )}t y tk C x    is also employed. 

 Secondly, we developed computational procedures how to calculate the values 

of scalarization functions (1.1) and (1.2). In order to find solutions of multi-objective 

problems, we used some types of scalarization algorithms such as positive linear 

functions and Tchebyshev scalarization. The function ( , ; )
C

h x y k  is regarded as a 

generalization of the Tchebyshev scalarization. By using the function, we gave four    

types of characterizations of set-valued maps. 

2 Inherited properties of set-valued maps 

The aim of this section is to investigate how the property of cone-convexity 

which is inherited into scalarization functions (1.1) and (1.2) from set-valued maps. 
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Let E  and Y  be topological vector spaces and , : 2
Y

F C E   is two multivalued 

mappings. Denote ( ) (int ( ) 2 \ )B x C x S S  (an open base of in t ( )C x ), where 

S  is a neighborhood of 0  in Y . To avoid confusion for properties of convexity, we 

consider the constant case of ( )C x C  (a convex cone) and its base ( )B x B , 

then function ( , ; ) ( ; ) : inf{ : }
C C

h x y k h y k t y tk C
 

    . We observe the 

following four types of scalarization functions: 

( )

( ; ) sup ( ; )
F

C C

y F x

x k h y k




 ,    
( )

( ; ) inf ( ; )
F

C C
y F x

x k h y k




 , 

( )

( ; ) sup ( ; )
F

C C

y F x

x k h y k
 



  ,    
( )

( ; ) inf ( ; )
F

C C
y F x

x k h y k
 



  . 

The first and fourth functions have symmetric properties and then results for the 

fourth function ( ; )
F

C
x k


  can be easily proved by those for the first function 

( ; )
F

C
x k . Similarly, the results for the third function ( ; )

F

C
x k


  can be deduced by 

those for the second function ( ; )
F

C
x k . By using these four functions we measure 

each image of set-valued maps F  with respect to its 4-couple of scalars, which can 

be regarded as standpoints for the evaluation of the image. 

   

Proposition 2.1 Let arbitrary vector int ( )k C x . Considering the corresponding 

( )C x C  and ( ; ) inf{ : }
C

h y k t y tk C


   , we have  

(ⅰ) ( ; ) 0
C

h y c


   for each y Y  and c C . 

(ⅱ) ( ; ) ( ; )
C C

h y k h y k 
 

  for each y Y  and 0  . 

(ⅲ) 
1 2 1 2

( ; ) ( ; ) ( ; )
C C C

h y y k h y k h y k
  

    for each 
1 2
,y y Y . 

Proof. To prove (ⅲ), for every 0   and 
1 2
,y y Y


  there exist 

i
t R  such that 

for each 1, 2i   
i i

y t k C   and  ( ; ) / 2
i C i

t h y k 


  . Thereby  

                      
1 2 1 2

( ; ) ( ; )
C C

t t h y k h y k 
 

    .                    (2.1) 

For every 
1 2
,y y Y  there exist 

1 2
,c c C  such that 

i i i
y t k c  , 1, 2i  .  We 

have  

                        
1 1 1 2 1 2

( ) ( )y y t t k c c     .                     (2.2) 

Since C  is convex cone, 
1 2

c c C  , and 
1 1 1 2

( )y y t t k C    , the following is 

obtained  

1 2 1 2
( ; )

C
t t h y y k


   . 

By the formula (2.1) and formula (2.2), we have  

1 2 1 2
( ; ) ( ; ) ( ; )

C C C
h y y k h y k h y k 

  
    . 

Since 0   is arbitrarily small, we obtain  
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1 2 1 2

( ; ) ( ; ) ( ; )
C C C

h y y k h y k h y k
  

   .              ▌ 

(ⅰ) and (ⅱ) of Proposition 2.1 can be proved simply and is omitted in the 

paper.                                   

Definition 2.1 A multifunction : 2
Y

F E   is called C-quasiconvex, if the set 

{ : ( ) ( ) }x E F x a C     is convex for every a Y .  If F  is C-quasiconvex, 

then F  is called C-quasiconvex, which is equivalent to (-C)-quasiconvex mapping.  

Definition 2.2 [4] A multifunction : 2
Y

F E   is called C-properly quasiconvex 

(type-(ⅴ)), if for every two points 
1 2
,x x X  and every [0,1]   we have either 

1 2 1
( (1 ) ) ( )F x x F x C      or 

1 2 2
( (1 ) ) ( )F x x F x C     . 

Definition 2.3 [4] A multifunction : 2
Y

F E   is called C-properly quasiconvex 

(type-(ⅲ)), if for every two points 
1 2
,x x X  and every [0,1]   we have either 

1 1 2
( ) ( (1 ) )F x F x x C      or 

2 1 2
( ) ( (1 ) )F x F x x C     . 

Definition 2.4 A multifunction : 2
Y

F E   is called C-naturally quasiconvex, if for 

every two points 
1 2
,x x X  and every [0,1]  we have 

1 2 1 2
( (1 ) ) ( ) (1 ) ( )F x x F x F x C         . 

 If F  is C-properly quasiconvex (type-(ⅴ)), then F  is called C-properly 

quasiconvex (type-(ⅴ)), which is equivalent to (-C)-properly quasiconvex mapping 

(type-(ⅴ)).  If F  is C-naturally quasiconvex (type-(ⅴ)), then F  is called 

C-naturally quasiconvex (type-(ⅴ)), which is equivalent to (-C)-naturally 

quasiconvex mapping (type-(ⅴ)).  

Theorem 2.1 (inherited convexity 1) 

(ⅰ) If the multifunction : 2
Y

F E   is C-properly quasiconvex (type-(ⅴ)), then 

the function 
( )

( ; ) sup ( ; )
F

C C

y F x

x k h y k




  is quasiconvex. 

(ⅱ) If the multifunction : 2
Y

F E   is C-properly quasiconvex (type-(ⅲ)), then 

the function 
( )

( ; ) sup ( ; )
F

C C

y F x

x k h y k




  is quasiconvex. 

(ⅲ) If the multifunction : 2
Y

F E   is C-properly quasiconvex (type-(ⅴ)), then 

the function 
( )

( ; ) inf ( ; )
F

C C
y F x

x k h y k




  is quasiconvex.  

(ⅳ) If the multifunction : 2
Y

F E   is C-properly quasiconvex (type-(ⅲ)), then 

the function 
( )

( ; ) inf ( ; )
F

C C
y F x

x k h y k




  is quasiconvex.  

Proof. To prove (ⅰ) by Definition 2, for every 
1 2
,x x X  and [0,1]  , we have 

either 
1 2 1

( (1 ) ) ( )F x x F x C      or 
1 2 2

( (1 ) ) ( )F x x F x C     . 

Assume that 
1 2 1

( (1 ) ) ( )F x x F x C     , then we have 
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1 2 1 2
( (1 ) ; ) sup{ ( ; ) | ( (1 ) )}

F

C C
x x k h y k y F x x    


       

 
1

sup{ ( ; ) | ( ) }
C

h y k y F x C


    

1
( ),

sup ( ; )
C

y F x c C

h y c k


 

   

                  
1

( ),

sup ( ( ; ) ( ; ))
C C

y F x c C

h y k h c k
 

 

    ( by (ⅲ) of Proposition 2.1) 

1
( )

sup ( ; )
C

y F x

h y k




  

1
( ; )

F

C
x k  

1 2
max{ ( ; ), ( ; )}

F F

C C
x k x k  .                     ▌ 

Analogously, we can prove the case of 
1 2 2

( (1 ) ) ( )F x x F x C     . 

To prove (ⅲ), we assume that for every 
1 2
,x x X  and [0,1]  , F  

satisfies either 
1 1 2

( ) ( (1 ) )F x F x x C      or 
2 1 2

( ) ( (1 ) )F x F x x C     . 

Assume that 
1 1 2

( ) ( (1 ) )F x F x x C     . Then we have  

1 2 1 2
( (1 ) ; ) inf{ ( ; ) | ( (1 ) )}

F

C C
x x k h y k y F x x    


       

1
inf{ ( ; ) | ( ) }

C
h y k y F x C


    

1
( ),

inf ( ; )
C

y F x c C

h y c k


 

   

                  
1

( ),

inf ( ( ; ) ( ; ))
C C

y F x c C

h y k h c k
 

 

    (by (ⅲ) of Proposition 2.1) 

 
1

( )

inf ( ; )
C

y F x

h y k




  

1
( ; )

F

C
x k  

                  
1 2

min{ ( ; ), ( ; )}.
F F

C C
x k x k                        ▌ 

Similarly, we can prove the case of 
2 1 2

( ) ( (1 ) )F x F x x C     .  (ⅱ) and 

(ⅳ) can be proved in the same way and is omitted in the paper. 

Theorem 2.2 (inherited convexity 2) If the multifunction : 2
Y

F E   is 

C-quasiconvex, then for every k B  the function 
( )

( ; ) inf ( ; )
F

C C
y F x

x k h y k




  is 

quasiconvex. 

Proof. By the definition of ( ; )
F

C
x k , for every 0   and 

1 2
,x x X  there exist 

( )
i i

z F x  and 
i

t R  such that for each 1, 2i   
i i

z t k C    and  

( ; )
F

i C i
t x k   . Since  

1 2
t k C t k C    for 

1 2
t t , we have  

1 2
max{ , }

i i
z t k C t t k C    . 

Hence, by the C-quasiconvex of F , for every 
1 2
,x x X  and [0,1]   there 
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exists 
1 2

( (1 ) )y F x x     such that 
1 2

max{ , }y t t k C  .  We have  

1 2
( ; ) max{ , }

C
h y k t t k C   

                    
1 2

max{ ( ; ), ( ; )}
F F

C C
x k x k    . 

Therefore, we have  

1 2 1 2
( (1 ) ; ) inf{ ( ; ) | ( (1 ) )}

F

C C
x x k h y k y F x x    


       

and since 0   is arbitrarily small, we obtain  

            
1 2 1 2

( (1 ) ; ) max{ ( ; ), ( ; )}
F F F

C C C
x x k x k x k       .        ▌ 

Theorem 2.3 (inherited semicontinuity 1) ([1]) Suppose that multifunction 

: 2
Y

W X   is defined as ( ) \ int ( )W x Y C x and has a closed graph. If the 

multifunction F  is ( ( ))C x -upper semicontinuous at x  for each x X , then 

the function 
1

( )
( )

( ) inf ( ; ) inf sup ( , ; )
F

k B C C
k B x

y F x

f x x k h x y k







   is upper semicontinuous. 

If the mapping C  is constant value, then 
1
( )f x  is upper semicontinuou.  

Theorem 2.4 (inherited semicontinuity 2) ([1]) Suppose that multifunction 

: 2
Y

W X   defined as ( ) \ int ( )W x Y C x and has a closed graph. If the 

multifunction F  is ( ( ))C x -lower semicontinuous at x  for each x X , then 

the function 
2

( ) ( )

( ) inf ( ; ) inf inf ( , ; )
F

k B C C
k B x y F x

f x x k h x y k



 

   is upper semicontinuous. 

If the mapping C  is constant value, then 
2
( )f x  is upper semicontinuous.  

3 Scalarization algorithms of set-valued maps                   

In this paper, the notation ( ; ) sup{ : }
C

h y k t y tk C


    is used as another 

scalarization function. Assume that x X  is a fixed, set-valued map ( )F x  is 

fixed, and the set-valued map ( )F x  is convex combination of finite vectors. In this 

case, we characterize set-valued map ( )F x  by using small quantity of parameters 

based on heritability of convexity. In this paper, we consider of using convex 

polyhedron consisted by extreme points of 
1 2
, , ,

n
y y y  to get Pareto solution, 

namely Pareto solution of Pareto side of convex combination of 
1 2

{ , , , }
n

co y y y . 

Therefore, we construct the following four types of characterization of set-valued 

maps by using scalarization functions ( ; )
C

h y k


 and ( ; )
C

h y k


: 

( )

( ; ) sup ( ; ) max max{ / }
F j j

C C i
i j

y F x

x k h y k y k




  , 

( )

( ; ) inf ( ; ) m in m ax{ / }
F j j

C C i
y F x i j

x k h y k y k




  , 

( )

( ; ) sup ( ; ) max min{ / }
F j j

C C i
ji

y F x

x k h y k y k
 



   , 
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( )

( ; ) inf ( ; ) m in m in{ / }
F j j

C C i
y F x i j

x k h y k y k
 



   . 

where ( )
i

y F x , 1, 2, ,i n , 1, 2, ,j p , ( ; ) sup{ : }
C

h y k t y tk C


   . 

In this paper, for 
( )

( ; ) inf ( ; )
F

C C
y F x

x k h y k




 , we developed the algorithms of 

characterization of set-valued map and Pareto solution of Pareto side base. 

3.1 Characterization of set-valued maps 

On the condition of
1 2

{ | 0} { , , , }
n

kt t co y y y   , we characterize 

set-valued map according to following algorithm. 

Step 1: Chose k B , 
1 2

: { , , , }
j n

y y y y y  , and 1j  . 

Step 2: If j n , stop the calculation. If j n , calculate 
j

t  of  extreme 

point 
j

y  according to 
( )

( ; ) inf ( ; )
F

C C
y F x

x k h y k




  and continue to Step 3. 

Step 3: If 1j  , then :
j

t t

 . If 1j  , then  

                        
,    

:

,    

j

j j

t t t
t

t t t

 














 

and return to Step 2 and : 1j j  . 

3.2 Calculation of Pareto solution 

On the condition of 
1 2

{ | 0} { , , , }
n

kt t co y y y   , we calculate Pareto 

solution according to following algorithm. 

Step 1: Choose k B  and 1j  . 

Step 2: If 2p  , continue to Step 2.1. If 2p  , continue to Step 2.2.  

Step 2.1: If !/ 2 !( 2) !j n n  , continue to Step3, otherwise choose 

extreme points 
u

y  and 
v

y  ( , {1, 2},u v u v  ), calculate j
  and 

j
t  

according to following algorithm  
1 1 1

2 2 2

(1 )

(1 )

j u j v j

j u j v j

t

t

y y k

y y k

 

 

   


  

 

and continue to Step 2.3. 

Step 2.2: If !/ 3 !( 3) !j n n  , continue to Step3, otherwise choose 

extreme points 
u

y , 
v

y  and q
y  ( , , {1, 2, , } ,u v q p u v q   ), calculate 

j
 , j

  and 
j

t  according to following algorithm  
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1
1 1

1
1 1

  

  

(1 )

(1 )

(1 )

(1 )

j u j v

p
p p

j u j v

j j q j

p
p p

j j q j

t

t
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and continue to Step 2.3.  

      Step 2.3: When 2p  , if 0 1
j

   calculate t


 according to 

following algorithm and : 1j j  . And return to Step2.1, otherwise return to 

Step2.2. When 3p  , if 0 1
j

   and 0 1
j

   calculate t


 according 

to following algorithm, and : 1j j  , otherwise return to Step2.2.  

,    
:

,    

j

j j

t t t
t

t t t

 














. 

Step 3: Calculate value of y

 corresponding to t


. Stop the calculation when 

y

 is the desired solution, otherwise return to Step 1 and revise k . 

This method of calculating maximum/minimum solution of scalar function is 

one dialogue-based method for decision-makers to get Acceptance Solution. 

Whether the solution is accepted or not depends on whether the solution satisfies 

judgment value benchmark of decision-makers. There is no very clear quantitative 

relation between target function value of the solution and k . At the beginning, let 

1k   and try to obtain the expected solution. Otherwise correct k  value toward 

getting expected solution. 

4 Conclusions                  

The paper studies the basic theory of multi-objective programming problems 

and scalarization method of set-valued maps.  

Scalarization of value range of functions in feasible domain was discussed. The 

scalarization function of Tchebyshev was generalized and described in the case 

of p
C R


 .  The scalarization functions of set-valued maps were investigated. The 

algorithms of characterization of set-valued map and Pareto solution of Pareto side  

were developed. This method suitable of non-convex set partly. 
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