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Abstract  Motion trajectory contains plentiful of motion information which is useful for 
motion analysis in many tasks. Motion recognition via trajectory is important in motion 
analysis for many human and robotic tasks. An effective descriptor for motion trajectories 
plays an important role in the recognition algorithm. In this paper, we propose a new 
descriptor with a modified data alignment method for motion trajectory recognition. 
Experimental results demonstrate the effectiveness of our method. 
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1 Introduction 
Motion trajectory is important for motion analysis, perception and recognition in 

many tasks for different types of human and machine actions [1,2]. Trajectory 
recognition is an important method for motion analysis by calculating the similarity 
between trajectories to characterize motions. Therefore, a flexible and adaptable 
method for 3D trajectory recognition plays an important role in the tasks here.  

In most of the existing matching algorithms, raw data were directly used in 
calculating the distance sum but ineffective. Similar motions will appear differently 
in raw data while transformation in 3D space. To solve this problem, a differential 
invariant descriptor was proposed in [3] to describe the local features of samples in 
trajectory for motion recognition. This signature performed better in flexibility than 
other shape descriptors, e.g. B-spline, NURBS, wavelet transformation, Fourier 
descriptor and CSS. Trajectories under this descriptor are invariant in spatial 
transformation. Although they are highly sensitive to outliers and noise as 
mentioned in [11], several methods have been used to solve these problems, such as 
setting threshold and smooth processing. Nevertheless, as the signature contain only 
local features, it is limited in some conditions, e.g. when the local shapes of 
different motion trajectories are similar that will be ignored in motion recognition 
by the matching approach.  

Trajectory alignment method is also important in the process of motion 
recognition and classification, which have been studied for years and extensively 
used in many domains. Select a proper method of data alignment for matching 
algorithm have significant effect on the accuracy in motion recognition. The 
Dynamic Time Warping (DTW) algorithm [4] is efficient and has been used in 
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many domains [14-16]. However, the difference of sample rate is an important 
factor which affects the accuracy of matching. The Continuous DTW (CDTW) 
algorithm solved this problem while introducing useless calculation between 
samples in the integral computation [5,13]. The Longest Common Subsequence 
(LCSS) is also a time indexing algorithm [6,8,9,10] which assumes identical lengths 
of trajectories. The Minimal Variance Matching (MVM) matches only the similar 
part of trajectories in [7]. 

In our work, a new descriptor is proposed for motion recognition which is more 
suitable for this problem than the previous ones because of the extra global variants 
contained in our descriptor. Further more, our new descriptor not only contains 
global parameters for flexible recognition, but also inherits the advantage of the 
previous invariant descriptor for translation, rotation, scaling and occlusion. We 
also modify the CDTW algorithm for more accurate and flexible recognition. 

The reminder of this paper is organized as follows. Section II describes the 
problems with the existing methods. The theory and algorithm of our method are 
expatiated in Section III and IV. Section V presents experiments and result analysis. 
This paper is concluded in the final section with the future work. 

2 Problem Statement 
Motion trajectory is record of a spatial motion by the coordinates of accurate 

position in time indexing. Fig. 1-c shows a piece of motion trajectory in 3D space. 
The previous invariant descriptor for motion recognition in [3] does not work when 
different motion trajectories contain similar shapes (see Fig. 1-a, b). The parameter 
d in Fig. 1 denotes the distance between the trajectories in matching. In this way, 
trajectories would be wrongly classified by the previous method. 

 
Fig. 1.  a and b show the effect of similar shapes. The result of matching gives small distance in (a) with 

previous method. However, they are significantly different while the similar shapes are not ignored in (b). c 
is a piece of 3D motion trajectory. 

 
Fig. 2.  Matching two similar trajectories (whose distance should be 0) using DTW, CDTW and our 

method. The distance of (c) is much more accurate with cubic polynomials interpolation. The curves of 
dashed line in (b) and (c) are the original trajectory. 
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The alignment method of trajectory is important in matching algorithm. The 
general alignment method in DTW and CDTW is suitable for curve matching rather 
than motion recognition because it does not consider the properties of motion. Fig. 
2 shows the results of matching by different algorithms which indicate that different 
match algorithms lead to different results. Proper alignment method considering 
motion properties is needed for accurate trajectory recognition. 

3 A New Descriptor for Flexible Matching 
Similar shapes between different motion trajectories shown in Fig. 1 will totally 

affect the matching result. This problem is caused by that the previous invariants 
contain only local features without any position message of world coordinate. Local 
features are useful in correspondence between samples of trajectories than general 
Euclidean distance, but ignore the scale of local features and the relationship 
between local features and global features. By contraries, in general Euclidean 
distance, similar shape is totally calculated because the Euclidean distance is 
exactly the difference of world coordinate. But in the Euclidean method the 
error-matched samples always occur in matching, because the local features is 
ignored. In this way, we propose a tradeoff method which contains both global 
features and local features. We present a new descriptor including both differential 
invariants in [3] and a new vector h(a, r) as global invariant. 
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sequence of motion trajectory. 
The differential invariants had been introduced in the previous signature in [3]: 

curvature k , torsionτ and their first order derivatives sk and sτ with respect to the 
Euclidean arc-length parameter s . The vector h represents the vector from the 

 
Fig. 3.  (a) shows the vectors h and u, and (b) shows the two components: a and r of h. 
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beginning of a trajectory to the sample being matched. The vector from the 
beginning to the end of the trajectory is defined as a unit vector u (see Fig. 3-a). For 
transformation of trajectory in 3D space, the vector h normalized by the unit vector 
u will not changes, because it always stays in the same circular conical surface (see 
Fig. 3-b). In this way, our new descriptor S* with these two parameters r and a will 
inherit the property of invariance of the previous descriptor. 

4 Trajectory Recognition with Modified CDTW 
4.1 Discrete Indexing Algorithm 

The time warping method used in [13] classified the path of alignment between 
two trajectories into four matching conditions in the algorithm. Those four 
conditions are complex in calculation and we simplify them into only two 
conditions in our algorithm.  

We use two sub-items to express the distances of two conditions and calculate 
the minimum of them as follow: 

( , ) min{D m n = ( , 1) ( , ),D m n d m nθ− + + ( 1, ) ( , )}D m n d m n θ− + +  
where m, n are sequence lengths of trajectory A and B, θ is a parameter between 0 
and 1, ( , )d m n is the distance between samples A(m) and B(n), ( , )d m nθ+ is the 
distance between samples A(m+θ ) and B(n). Here A(m+θ ) is a point moving on 
the trajectory A between samples A(m) and A(m+1) as shown in Fig. 4. 

For the matching between A(m) and B(n) in DTW, the corresponding points can 
only be three positions: the three intersections (m, n), (m+1, n), (m, n+1) in Fig. 4-a. 
However, in our approach, the matching point can be anywhere on the two sides 
connecting the three points (see Fig. 4-b). In this way, the difference of samplings 
will not increase the distance between similar trajectories and the difference of 
trajectory lengths will not affect the matching either. 

Those four conditions in CDTW [13] are simplified into two conditions in every 
step of our algorithm, no matter which side the warping path go through in the 
previous step of matching and into the present ‘matching block’ (see Fig. 4-b). As 
soon as the warping path enters the block, it can only exit from the left side or 
bottom side, including the intersection of these sides. All these conditions are 
included in formula (2.2.1). Whenθ =1, this is the same condition as that in DTW 
algorithm. 

 
Fig. 4.  The matching blocks of DTW in (a) and our method in (b). Matching in (a) can only choose 3 

points: (m,n+1), (m, n) and (m+1,n) while all the points on real lines can be matched in (b). 
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4.2 Cubic Polynomials Interpolation 
In the warping algorithm, if the parameterθ is not zero, the corresponding point 

in one of the trajectories must between the adjacent samples and the position of the 
point is unknown. In the CDTW algorithm [13], the positions in x and y direction 
are calculated by linear interpolation separately. However, the linear interpolation is 
not accurate especially in motion trajectories, because not only the two adjacent 
samples decide the position between these samples but also the neighbor samples of 
them will affect the position of the unknown point as well. 

As presented in the efficient prediction method Kalman Filtering [14], the 
prediction of the unknown point x(m+θ ) depends and only depends on the present 
sample x(m) and the previous sample x(m-1). As the whole trajectory sample data are 
known in advance, the succeeding samples x(m+1) and x(m+2) are also useful in 
calculating the unknown point (see Fig. 5). We can also use this theory by the feature 
of motion that the previous sample x(m-1) will control the inertia of the unknown 
point by direction and speed as well as that the same property of the unknown point 
will also affect the succeeding sample x(m+2). 

In our method, the cubic polynomials interpolation is selected to calculate the 
coordinate of the unknown point with four samples: x(m-1), x(m) ,x(m+1) and 
x(m+2), because four samples can control a cubic curve. Then we use the calculated 
coordinates and neighbor known samples to calculate the invariants of the point for 
the calculation of the matching distance in next subsection. 

4.3 Calculation of Similarity 
For the two corresponding points A(m) and B(n) in trajectories A and B (maybe 

A(m+θ ) or B(n+θ )), the new signature descriptor uses [ mk , m
sk , mτ , m

sτ , ma , mr ] 

and [ nk , n
sk , nτ , n

sτ , na , nr ] for representation of them. The distance between 
samples A(m) and B(n) is defined with Euclidean distance as follows: 
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Fig. 5.  The Samples used in calculating the unknown points (linked by dashed) are denoted by circles. 

Linear interpolation use only 2 points in A, while cubic polynomials interpolation use 4 points in B. 
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and ( , )d m nθ+ is defined as:  
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The definition of ( , )d m n θ+ is similar to ( , )d m nθ+ . 
The parameterλ ≥ 0 is the weight of h  and can be set in the algorithm for 

different types of tasks. For example, we can setλ =0 when there is no similar 
shape between trajectories, and setλ >0 for trajectories with similar shapes. We can 
also check whether a set of trajectories have similar shapes by adjustingλ with 
different values to see whether it makes the results different. 

5 Experiments 
We implemented trajectory recognition with our new descriptor to compare with 

the previous invariants via modified CDTW. Some sign motion trajectories were 
used in this experiment to test the characteristics of our method and a database used 
in [3] was tested with our method for motion recognition. We used the sign motion 
trajectories to illuminate the advantage of our new method. Our method is flexible 
for general motion recognition. 

Sign is a sort of motions from people and robots behavior. They are all spatial 
symbols performed by hands or other mode and are used for interaction between 
people and/or robots. We matched these motions by their trajectories for recognition. 
We used a stereo vision system to record people sign motion trajectories (Fig. 6-d). 
The 3D motion trajectory is calculated from the two image sequences from separate 
camera. We have 2 groups of different words with similar shapes signed by 
different people for every group, and tested these groups with both the previous 
invariant descriptor and our descriptor for comparison. Every couple of different 
words in these groups is similar in their local shapes. We also tested the same word 
by different fonts (just like the experiment 5.1-5.3 in [3]). Recognition with the 
previous descriptor can only classify the words in different classes but cannot 
distinguish the same word in different fonts. In some cases, similar words in 
different classes cannot be correctly classified either. However, our descriptor can 
solve these confusions in our experiments (see Fig. 6-b,c).  

 
Fig. 6.  a is matching of the same word signed in different fonts referred from Fig.16 in [3]. b and c is 

the matching of different words with similar shapes. d is the stereo vision system. 
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In our implementation, we matched the words in different classes by previous 
descriptor and new descriptor separately. The results in comparison are listed in 
Table I. The data in the table are distance by separate descriptor, and we tested 100 
data for every subgroup. We calculated the average values and the extreme values 
from the 100 data and list them in the table. From the data we can see that the match 
of d-q is not clearly different from d-d and q-q, with even some of the extreme 
values overlapped. In this way, d and q cannot be classified accurately by the 
previous descriptor and will be wrongly accepted or rejected for the boundary 
confusion. In contrast, we can see that the results of d-q are obviously different 
from d-d and q-q in our new descriptor and the boundaries are distinguished. The 
same condition occurs in matching between 0 and 6. The experiments in [14] also 
suffer the confusion of 0 and 6. We also tested 4 and 9 which were signed in 
different fonts, just like Fig. 6-a which is referred from the experiment in [3]. We 
also distinguish the number 4 with long tail from the general 4, which can be only 
classified from other words in [3]. The results are listed in Table II.  

 

6 Conclusions and Future Work 
A new invariant descriptor is presented for 3D trajectory recognition via 

modified CDTW matching algorithm. This new descriptor is based on the previous 
invariants descriptor but uses extra parameters containing global information which 
was not included in the previous one. We also modified the CDTW algorithm for 
matching trajectories with the cubic polynomials interpolation. 

We compare the performance of classifying different classes of trajectories by 
our new descriptor with the performance of the previous descriptor. Our method 
shows better performance especially in distinguishing motions with similar shapes. 
To increase the computational efficiency of the CDTW algorithm for high speed 
implementation, some efficient methods need to be developed for computing the 
invariants. 
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