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Abstract In this paper, we present an analysis for an M/M/c/N queueing system with balking,
reneging and synchronous vacations of partial servers together. It is assumed that arriving cus-
tomers balk with a probability and renege according to an exponential distribution. The vacation
policy prescribes that any d (0<d<c) servers take a vacation together when these d servers find that
no customers are waiting in the line at a service completion instant and c− d servers are always
available, either serving the customers or remaining idle. At a vacation completion instant, if the
number of customers in the system is not more than c− d, these d servers take another vacation
together; otherwise, these d servers return to serving the queue. The service times and the vacation
times are assumed to follow independent exponential distributions. By using the Markov process
theory, we first develop the equations of the steady state probabilities and derive a matrix form
solution of the steady-state probabilities. Then we give some performance measures of the system
such as the expected number of waiting customers, the expected number of the customers in the
system, the average rate of customer loss due to impatience, etc. Based on the performance analy-
sis, we formulate a cost model to determine the optimal number of servers on vacation. Finally, we
perform sensitivity analysis through numerical experiments.

Keywords synchronous vacation; balking; reneging; queueing system; steady-state probability;
partial servers; cost model

1 Introduction
In real life, many queueing situations arise in which there may be a tendency

for customers to be discouraged by a long queue. As a result, the customers either
decide not to join the queue (i.e. balk) or depart after joining the queue without
getting service due to impatience (i.e. renege). Balking and reneging are not only a
common phenomena in queues arising in daily activities, but also in various machine
repair models. For related literature, interested readers may refer to [1], [2], and
references therein. An interesting example of the occurrence of balking and reneging
in air defence systems is given in Ancker and Gafarian [3].
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Queueing systems with balking, reneging, or both have been studied by many
researchers. Haight [4] first considered an M/M/1 queue with balking. An M/M/1
queue with customers reneging was also proposed by Haight [5]. The combined
effects of balking and reneging in an M/M/1/N queue have been investigated by
Ancker and Gafarian [6], [7]. Abou-EI-Ata and Hariri [8] considered the multiple
servers queueing system M/M/c/N with balking and reneging. Wang and Chang [9]
extended this work to study an M/M/c/N queue with balking, reneging and server
breakdowns.

On the other hand, queueing models with vacations have been studied by many
researchers during the past two decades and have been found to be applicable in
analyzing numerous real world queueing situations such as flexible manufacturing
systems, service systems, and telecommunication systems. Several excellent surveys
on these vacation models have been done by Doshi [10], [11] and Takagi [12]. How-
ever, there are only a few works that take into consideration balking and reneging
phenomena involving server vacations. The readers may refer to Zhang et al. [13]
where an M/M/1/N queueing system with balking, reneging and server vacations was
considered.

Multiple server vacation models are more flexible and applicable in practice
than single server counterparts. In many practical multiple server systems, some
servers perform secondary jobs (take vacations) when they become idle, while other
servers are always available for serving arriving customers. These types of models
are called “partial server vacation models". Recently, Zhang and Tian [14] stud-
ied M/M/c queueing system with synchronous vacations of partial servers. They
obtained the stationary distribution of the queue length and proved several condi-
tional stochastic decomposition results for the queue length and the customer waiting
time. In this paper, we consider the balking and reneging phenomena in an M/M/c/N
queueing system with the same partial server vacation policy as in [14].

The rest of this paper is organized as follows. In the next section, we give a de-
scription of the queueing model. In Section 3, we derive the steady-state equations by
the Markov process method. By writing the transition rate matrix as a block matrix,
we get the matrix form solution of the steady-state probabilities. In Section 4, we
give some performance measures of the system. Based on the performance analysis,
we formulate a cost model to determine the optimal number of servers on vacation.
In Section 5, we perform sensitivity analysis through numerical experiments. Con-
clusions are given in Section 6.

2 System Model
In this paper, we consider an M/M/c/N queueing system with balking, reneging

and a vacation policy for servers. The system capacity is finite N. The assumptions
of the system model are as follows:

(a) Customers arrive at the system one by one according to a Poisson process with
arrival rate λ . The service time for each server is assumed to be distributed
according to an exponential distribution with service rate µ .
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(b) A customer who on arrival finds n customers in the system, either decides to
enter the queue with probability bn or balk with probability 1−bn,

0≤ bn+1 ≤ bn < 1, R−d ≤ n≤ N−1,

bn = 0, n≥ N.

(c) The vacation policy prescribes that any d (0 < d < c) servers take a vacation
together when these d servers find that no customers are waiting in the line
at a service completion instant and c− d servers are always available, either
serving the customers or remaining idle. At a vacation completion instant, if
the number of customers in the system is not more than c−d (still no customers
waiting in line), these d servers take another vacation together; otherwise, these
d servers return to serving the queue. Because these d servers take vacations
simultaneously, these vacations are synchronous vacations. The vacation time
is assumed to be exponentially distributed with mean 1/η .

(d) After joining the queue, in the case where all the servers available are occupied,
each customer will wait a certain length of time T for service to begin before
they get impatient and leave the queue without receiving service. This time T
is assumed to be distributed according to an exponential distribution with mean
1/α . Let i denote the number of severs being busy and n represent the number
of customers in the system. If n is less than or equal to i, the customers will get
service instantly upon arrival to the server, and the phenomenon of reneging
will not occur. If n is greater than i, then there are n− i customers who have to
wait in the queue. Since the arrival and the departure of the impatient customers
without service are independent, the average reneging rate in this state is given
by (n− i)α .

(e) The service order is assumed on first-come first-served (FCFS) basis and the
inter-arrival times, service times, and vacations are mutually independent.

3 Steady-State Probability
In this section, we derive the steady-state probabilities by the Markov process

method.

3.1 Steady-state equations
Let L(t) be the number of customers in the system at time t and let

J(t) =
{

0, d vacation servers are on vacation at time t
1, d vacation servers are not on vacation at time t.

Then {L(t),J(t)} is a Markov process with state space

Ω = {(k,0) : 0≤ k ≤ c−d}∪{(k, j) : c−d +1≤ k ≤ N, j = 0,1}.
Define the steady-state probabilities of the system as follows:

P0(n) = lim
t→∞

P{L(t) = n,J(t) = 0}, 0≤ n≤ N,

P1(n) = lim
t→∞

P{L(t) = n,J(t) = 1}, c−d +1≤ n≤ N.
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By applying the Markov process theory, we can obtain the following set of steady-
state probability equations:

µP0(1) = λP0(0),

λP0(n−1)+(n+1)µP0(n+1) = (λ +nµ)P0(n), 1≤ n < c−d,

(c−d +1)µP1(c−d +1)+λP0(c−d−1)+ [(c−d)µ +α]P0(c−d +1)

= [(c−d)µ +λbc−d]P0(c−d),

λbN−1P0(n−1)+{(c−d)µ +(n+1+d− c)α}P0(n+1)

= {η +(c−d)µ +(n+d− c)α +λbn}P0(n), c−d < n < N,

λbN−1P0(N−1) = {η +(c−d)µ +(N +d− c)α}P0(N),

ηP0(c−d +1)+(c−d +2)µP1(c−d +2) = [(c−d +1)µ +λ ]P1(c−d +1),

ηP0(n)+λP1(n−1)+(n−1)µP1(n+1)
= (nµ +λ )P1(n), c−d +2≤ n≤ c−1,

ηP0(c)+λP1(c−1)+(cµ +α)P1(c+1) = (cµ +λbc)P1(c),

η p0(n)+λbn−1P1(n−1)+ [cµ +(n+1− c)α]P1(n+1)

= [cµ +λbn +(n− c)α]P1(n), c < n < N,

ηP0(N)+λbN−1P1(N−1) = [cµ +(N− c)α]P1(N),

N

∑
n=0

P0(n)+
N

∑
n=c−d+1

P1(n) = 1.

3.2 Matrix solution
In this subsection, we derive the steady-state probabilities by using the matrix

analytical method. Let

PPP = (P0(0),P0(1), ...,P0(N),P1(c−d +1),P1(c−d +2), ...,P1(N))

be the steady-state probability vector. Then, the steady-state probability equations
above can be rewritten as the matrix form as follows:{

PPPQQQ = 0
PPPeee = 1 (1)

where eee = (1,1, ...1)T is a (2N− c+d +1)×1 vector, and the transition rate matrix
QQQ of the Markov process has the following blocked matrix structure:

QQQ =




AAA11 AAA12 000
AAA21 AAA22 AAA23

AAA31 000 AAA33


 .

Performance Analysis of an M/M/c/N Queueing System 131



Each matrix AAAi j (i, j = 1,2,3) is given as follows:

AAA11 =




s0 λ 0 · · · 0 0 0
t1 s1 λ · · · 0 0 0
0 t2 s2 · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · tc−d−1 sc−d−1 λ
0 0 0 · · · 0 tc−d sc−d




,

AAA12 =




0 0 · · · 0
...

...
...

0 0 · · · 0
λbc−d 0 · · · 0


 , AAA21 =




0 0 · · · tc−d+1

0 0 · · · 0
...

...
...

0 0 · · · 0


 ,

AAA22 =




sc−d+1 λbc−d+1 0 · · · 0 0 0
tc−d+2 sc−d+2 λbc−d+2 · · · 0 0 0

0 tc−d+3 sc−d+3 · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · tN−1 sN−1 λbN−1

0 0 0 · · · 0 tN sN




,

AAA23 = ηIII, AAA31 =




0 · · · 0 v1

0 · · · 0 0
...

...
...

0 · · · 0 0


 ,

AAA33 =




u1 λ 0 · · · 0 0 0 · · · 0 0
v2 u2 λ · · · 0 0 0 · · · 0 0
0 v3 u3 · · · 0 0 0 · · · 0 0
...

...
...

...
...

...
...

...
0 0 0 · · · ud−1 λ 0 · · · 0 0
0 0 0 · · · vd ud λbc · · · 0 0
0 0 0 · · · 0 vd+1 ud+1 · · · 0 0
...

...
...

...
...

...
...

...
0 0 0 · · · 0 0 0 · · · uN+d−c−1 λbN−1

0 0 0 · · · 0 0 0 · · · vN+d−c uN+d−c




where AAA11 is a (c−d+1)×(c−d+1) square matrix, AAA12 is a (c−d+1)×(N−c+d)
matrix, AAA21 is an (N − c + d)× (c− d + 1) matrix, AAA22, AAA23 and AAA33 are (N − c +
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d)× (N− c + d) square matrixes, AAA31 is an (N− c + d)× (c−d + 1) matrix, III is an
(N− c+d)× (N− c+d) identity matrix, and

si =





−(λ + iµ), 0≤ i≤ c−d−1
−[λbc−d +(c−d)µ], i = c−d
−[η +λbi +(c−d)µ +(i+d− c)α], c−d +1≤ i≤ N−1
−[η +(c−d)µ +(N +d− c)α], i = N,

ti =
{

iµ, 1≤ i≤ c−d
(c−d)µ +(i− c+d)α, c−d +1≤ i≤ N,

ui =




−[λ +(c−d + i)µ], 1≤ i≤ d−1
−[λbi+c−d + cµ +(i−d)α], d ≤ i≤ N +d− c−1
−[cµ +(N− c)α], i = N +d− c,

vi =
{

(c−d + iµ), 1≤ i≤ c
cµ +(i−d)α, d +1≤ i≤ N +d− c.

In the following, we derive the steady-state probabilities from Eq. (1). To ac-
commodate the partitioned blocked structure of QQQ, we partition the steady-state prob-
ability vector into the segments accordingly as

PPP = (PPP00,PPP01,PPP1)

where

PPP00 =(P0(0),P0(1), ...,P0(c−d)),

PPP01 =(P0(c−d +1),P0(c−d +2), ...,P0(N)),

PPP1 =(P1(c−d +1),P1(c−d +2), ...,P1(N)).

Based on these partitions of the vector PPP, Eq. (1) can be rewritten as follows:

PPP00AAA11 +PPP01AAA21 +PPP1AAA31 = 0, (2)

PPP00AAA12 +PPP01AAA22 = 0, (3)

ηPPP01 +PPP1AAA33 = 0, (4)

PPP00eee0 +PPP01eee1 +PPP1eee1 = 1 (5)

where the vector eee0 = (1,1, ...,1)T is a (c− d + 1)× 1 vector, and the vector eee1 =
(1,1, ...,1) is an (N +d− c)×1 vector.

In order to solve the equations above by using the blocked matrix method, we
prove that the matrixes AAA11, AAA22, and AAA33 are invertible. We have the following lem-
mas.

Lemma 1. The matrixes AAA11 and AAA33 are invertible.
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Proof. By applying the properties of the determinant of transformation, it is easy to
show that the determinant of matrix

|AAA11|= (−λ )c−d+1bc−d 6= 0

and the determinant of matrix

|AAA33|= (−1)N+d−c
c

∏
i=c−d+1

iµ
N−c

∏
j=1

(cµ + jα) 6= 0.

Hence, the matrixes AAA11 and AAA33 are invertible.

Lemma 2. Let AAA = (ai j) be an n× n square matrix. If |aii| > ∑ j 6=i |ai j| for i =
1,2, ...,n, then |AAA| 6= 0.

Proof. Suppose that |AAA| = 0, then the matrix equation AAAxxx = 000 has a non-trivial so-
lution, that is, a non-zero column vector kkk = (k1,k2, ...,kn)T that satisfies AAAkkk = 000.
Let

|ki|= max{|k1|, |k2|, ..., |kn|},

then |ki| 6= 0 since kkk is non-zero vector. From AAAkkk = 000, we have

n

∑
j=1

ai jk j = 0

or equivalently

aii =−∑
j 6=i

ai j
k j

ki
.

Hence,

|aii|= |∑
j 6=i

ai j
k j

ki
| ≤∑

j 6=i

|ai j||k j

ki
| ≤∑

j 6=i

|ai j|.

This contradicts the condition that |aii| > ∑ j 6=i |ai j| for i = 1,2, ...,n. This contradic-
tion shows that |AAA| 6= 0. Hence, we complete the proof.

Lemma 3. The matrix AAA22 is invertible.
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Proof. Let ai j be the (i, j) elements of matrix AAA22. Then, it is easy to see that

|a11|=η +λbc−d+1 +(c−d)µ +α

>λbc−d+1 = ∑
j 6=1

a1 j,

|aii|=η +λbc−d+i +(c−d)µ + iα

>λbc−d+i +(c−d)µ + iα = ∑
j 6=i

ai j, 2≤ i≤ N +d− c−1,

|aN+d−c|=η +(c−d)µ + i(N +d− c)α

> (c−d)µ +(N +d− c)α = ∑
j 6=N+d−c

aN+d−c j.

By Lemma 2, |AAA22| 6= 0. Hence, we prove Lemma 3.

We are now ready to derive the steady-state probabilities from Eqs. (2)-(5). Let
εεε = (1,0, ...,0) be a 1× (c− d + 1) unit vector and xxx = εεεAAA−1

22 . Then, xxx is a first
row vector of the matrix AAA−1

22 . Hence, xxx is a 1× (N− c + d) vector. Let yyy = xxxAAA−1
33 .

Then, yyy is a 1× (N − c + d) vector. Let δδδ = (0, ...,0,1) be a 1× (c− d + 1) unit
vector and zzz = δδδAAA−1

11 . Then, zzz is a last row vector of the matrix AAA−1
11 . Hence, zzz is a

1× (c−d +1)vector. We have the following theorem.

Theorem 4. The segments of steady-state probability vector are given by

PPP00 =−K(ηv1yyy− tc−d+1xxx)εεεT zzz, (6)

PPP01 =−Kxxx, (7)

PPP1 =ηKyyy (8)

where εεεT is the transpose of the unit vector εεε , and the constant

K =
[
(yyy− xxx)eee1− (ηv1yyy− tc−d+1xxx)εεεT zzzeee0

]−1
. (9)

Proof. From Eq. (3), based on Lemma 3, we have

PPP01 =−PPP00AAA12AAA−1
22

=−(λbc−dP0(c−d),0, ...,0)AAA−1
22

=−λbc−dP0(c−d)εεεAAA−1
22 . (10)

Let K = λbc−dP0(c−d), then Eq. (10) can be rewritten as

PPP01 =−Kxxx. (11)
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Based on Lemma 1, substituting Eq. (11) into Eq. (4) yields

PPP1 = ηKyyy. (12)

Then substituting Eqs. (11) and (12) into Eq. (2), we get

PPP00 =−K(ηyyyAAA31− xxxAAA21)AAA−1
11 . (13)

By rewriting the matrix AAA21 and the matrix AAA31 as the partitioned blocked matrixes,
we have

AAA21AAA−1
11 = tc−d+1




δδδ
0
...
0


AAA−1

11 = tc−d+1




zzz
0
...
0


 = tc−d+1εεεT zzz (14)

and

AAA31AAA−1
11 = v1




δδδ
0
...
0


 = v1




zzz
0
...
0


 = v1εεεT zzz. (15)

Substituting Eqs. (14) and (15) into Eq. (13), we get

PPP00 =−K(ηv1yyy− tc−d+1xxx)εεεT zzz. (16)

The constant K can be obtained as the expression given in Eq. (9) by substituting
Eqs. (11), (12) and (16) into Eq. (5). Hence, the proof is completed.

Remark 1. Based on Theorem 4, to compute the steady-state probability vector,
we need mainly to compute the vectors xxx, yyy and zzz. Since it is not easy to get the
expressions of the matrix AAA−1

11 , the matrix AAA−1
22 and the matrix AAA−1

33 , the vectors xxx, yyy
and zzz are not explicitly given. However, these vectors xxx, yyy and zzz can be obtained by
solving the linear equation xxxAAA22 = εεε , yyyAAA33 = xxx and zzzAAA11 = δδδ , respectively.

Remark 2. Note first that the results for M/M/1/N queueing system with balking,
reneging and multiple server vacations are obtained by setting c = 1 and d = 1 in
Eqs. (6)-(9). Eqs. (6)-(9) then correspond to the existing results in [13]. Next, note
that the results for M/M/c/N queueing systems with synchronous vacations of partial
servers are obtained by setting bn = 1 and α = 0 in Eqs. (6)-(9).

4 Performance Measures and Cost Model
In this section, we give some performance measures of the system. Based on

these performance measures, we develop a cost model to determine the optimal num-
ber of servers being on vacation.
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4.1 Performance measures
Let εεε i be a (c−d +1)×1 unit vector with the (i+1)th element equal to 1 and

the other elements equal to 0, i = 0,1, ...,c−d. Let δδδ i be a (N−c+d)×1 unit vector
with the ith element equal to 1 and the other elements equal to 0, i = 1,2, ...,N−c+d.
It is easy to see that

P0(n) =
{

PPP00εεεn, 0≤ n≤ c−d,
PPP01δδδ n−c+d, c−d +1≤ n≤ N (17)

and

P1(n) = PPP1δδδ n−c+d, c−d +1≤ n≤ N (18)

where PPP00, PPP01 and PPP1 are given in Theorem 4.
Based on the expressions of the steady-state probabilities given by Eqs. (17)

and (18), we can obtain some steady-state performance measures of the system. For
notational convenience, we define the following vectors:

ξξξ 1 =
c−d

∑
n=1

nεεεn, ξξξ 2 =
N

∑
n=c−d+1

nδδδ n−c+d,

ξξξ 3 =
N

∑
n=c+1

(n− c)δδδ n−c+d, ξξξ 4 =
c

∑
n=c−d+1

nδδδ n−c+d +
N

∑
n=c+1

cδδδ n−c+d,

ξξξ 5 =
N

∑
n=c−d+1

(1−bn)δδδ n−c+d, ξξξ 6 =
N

∑
n=c

(1−bn)δδδ n−c+d

where ξξξ 1 is a (c−d +1)×1 vector, ξξξ 2, ξξξ 3, ξξξ 4, ξξξ 5 and ξξξ 6 are (N−c+d)×1 vectors.

Theorem 5. The expected number of customers in the system is given by

E(N) = PPP00ξξξ 1 +(PPP01 +PPP1)ξξξ 2. (19)

The expected number of the waiting customers in the queue is given by

E(Nq) = PPP01[ξξξ 2− (c−d)eee1]+PPP1ξξξ 3. (20)

The expected number of servers on vacation is given by

E(V ) = d[PPP00eee0 +PPP01eee1]. (21)

The expected number of busy servers in the system is given by

E(B) = PPP00ξξξ 1 +(c−d)PPP01eee1 +PPP1ξξξ 4. (22)

The expected number of idle servers in the system is given by

E(I) = PPP00[(c−d)eee0−ξξξ 1]+PPP1(ceee1−ξξξ 4). (23)
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Proof. Note that

E(N)=
N

∑
n=0

nP0(n)+
N

∑
n=c−d+1

nP1(n),

E(Nq)=
N

∑
n=c−d+1

(n− c+d)P0(n)+
N

∑
n=c+1

(n− c)P1(n),

E(V )=
N

∑
n=0

dP0(n).

Substituting P0(n) of Eq. (17) and P1(n) of Eq. (18) into the equations above, we
obtain the results given by Eqs. (19), (20) and (21). It is easy to see that

E(B) = E(N)−E(Nq). (24)

Substituting Eqs. (19) and (20) into the equation above yields Eq. (22). Note that

E(I) = c−E(B)−E(V ), (25)

the result for E(I) given by Eq. (23) is obtained by substituting Eqs. (21) and (24)
into the equations above.

Theorem 6. The average balking rate is given by

B.R. = λ{(1−bc−d)PPP00εεεc−d +PPP01ξξξ 5 +PPP1ξξξ 6}. (26)

The average reneging rate is given by

R.R. = α{PPP01[ξξξ 2− (c−d)eee0]+PPP1ξξξ 3}. (27)

The average rate of customer loss is given by

L.L. = λ{(1−bc−d)PPP00εεεc−d +PPP01ξξξ 5 +PPP1ξξξ 6}
+α{PPP01[ξξξ 2− (c−d)eee0]+PPP1ξξξ 3}. (28)

Proof. Since the probability that a customer balks in the system is 1− bn when the
customer on arrival finds n customers in the system, then the instantaneous balking
rate is λ (1− bn). Following the model of Ancker and Gafarian [6], the average
balking rate B.R. is given by

B.R. =
N

∑
n=c−d

λ (1−bn)P0(n)+
N

∑
n=c

λ (1−bn)P1(n).

Substituting P0(n) of Eq. (17) and P1(n) of Eq. (18) into the equation above yields
Eq. (26).
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If there are n customers in the system and i servers available, then there are n− i
waiting customers in the queue. Since any one of the n− i customers in the queue
may renege, the instantaneous reneging rate is (n− i)α . Again, following the model
of Ancker and Gafarian [6], the average reneging rate R.R. is given by

R.R. =
N

∑
n=c−d+1

(n− c+d)αP0(n)+
N

∑
n=c+1

(n− c)αP1(n) = αE(Nq).

Substituting E(Nq) of Eq. (20) yields Eq. (27).
The average rate of customer loss, L.R., is simply the sum of the average balking

rate and the average reneging rate. Thus, we have

L.R. = B.R.+R.R.

Then, Eq. (28) is obtained by substituting Eqs. (26) and (27) into the equation
above.

4.2 Cost model
In this subsection, we develop an expected cost function where the number of

servers on vacation d is a decision variable. Our objective is to determine the opti-
mum number of servers on vacation d∗ to minimize this cost function.

Let
C1 ≡ cost per unit time when one server is on vacation,
C2 ≡ cost per unit time when one server is idle,
C3 ≡ cost per unit time when one server is busy,
C4 ≡ cost per unit time when one customer is waiting for service,
C5 ≡ cost per unit time when one customer joins the system and is served,
C6 ≡ cost per unit time when a customer balks or reneges.
According to the definitions of each cost element listed above, the total expected

cost function per unit time is given by

F(d) = C1E(V )+C2E(I)+C3E(B)+C4E(Nq)+C5(E(N)−E(Nq))+C6L.L.

or equivalently

F(d) = C1E(V )+C2E(I)+(C3 +C5)E(B)+C4E(Nq)+C6L.L.

where E(V ), E(I), E(B) and E(Nq) are given in Theorem 5, and L.L. is given in
Theorem 6.

5 Numerical Results
In this subsection, we perform a sensitivity analysis on the optimal number of

servers on vacation d∗ and its expected cost F(d∗) based on changes in the values of
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the system parameters such as the arrival rate λ , the service rate µ , the reneging rate
α and the vacation rate η .

Since the decision variable d is an integer value and the expected cost function
is non-linear and complex, it would be an arduous task to derive analytic results for
the optimal value d∗. Thus, we use a heuristic approach to obtain the optimal value
d∗ which is determined by satisfying the following inequality:

F(d∗−1) > F(d∗) < F(d∗+1).

We set the system capacity N = 10 and the number of servers c = 4. We select
the probability b0 = 0.95 and bn = 1− n/N for 1 ≤ n ≤ N by referencing [6], and
employ the following cost elements by referencing [9]: C1 = 100, C2 = 110, C3 =
120, C4 = 150, C5 = 130 and C6 = 140. The numerical results for the optimal value
d∗ and the optimal cost F(d∗) are illustrated in Figs. 1-4.

In Fig. 1, we fix µ = 1.0, η = 0.3 and α = 0.2, and display the optimal critical
value d∗ and the optimal cost F(d∗) by varying the arrival rate λ . Fig. 1 shows that
the optimal value d∗ decreases as λ increases, while the optimal cost F(d∗) increases
significantly as λ increases.
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Figure 1: Optimal cost F(d∗) and optimal value d∗ versus arrive rate λ with µ1 = 1.0,
η = 0.3 and α = 0.2.

In Fig. 2, we fix λ = 0.5, η = 0.3 and α = 0.2, and display the optimal critical
value d∗ and the optimal cost F(d∗) by varying the service rate µ . Fig. 2 shows that
the optimal value d∗ increases as µ increases, while the optimal cost F(d∗) decreases
significantly as µ increases.
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Figure 2: Optimal cost F(d∗) and optimal value d∗ versus service rate µ with λ = 0.5,
η = 0.3 and α = 0.2.

In Fig. 3, we fix λo.5, µ = 1 and η = 0.3, and display the optimal critical value
d∗ and the optimal cost F(d∗) by varying the reneging rate α . Fig. 3 shows that the
optimal value d∗ increases as α increases, while the optimal cost F(d∗) decreases
slightly as α increases.

In Fig. 4, we fix λ = 0.5, µ = 1.0 and α = 0.2, and display the optimal critical
value d∗ and the optimal cost F(d∗) by varying the vacation rate η . Fig. 4 shows that
the optimal value d∗ increases as η increases, while the optimal cost F(d∗) decreases
slightly as η increases.

It appears from Figs. 1-4 that: (i) The arrival rate λ and the service rate µ affect
the optimal value d∗ and the optimal cost F(d∗) significantly. (ii) The reneging rate
α and the vacation rate η affect the optimal value d∗ and the optimal cost F(d∗)
slightly.

6 Conclusions
In this paper, we have considered an M/M/c/N queueing system with balking,

reneging and synchronous vacations of partial servers. We have developed the equa-
tions of the steady state probabilities and derived the matrix form solution for the
steady-state probability vector. Based on the steady-state probability vector, we have
obtained some performance measures of the system and formulated a cost model to
determine the optimal number of servers on vacation. Furthermore, we have per-
formed sensitivity analysis through numerical experiments.
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Figure 3: Optimal cost F(d∗) and optimal value d∗ versus reneging rate α with λ =
0.5, µ = 1.0 and η = 0.3.
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Figure 4: Optimal cost F(d∗) and optimal value d∗ versus vacation rate η with λ =
0.5, µ = 1.0 and α = 0.2.
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