
Scheduling with Discretely Compressible
Processing Times to Minimize Makespan

Shu-Xia Zhang1,2,∗ Zhi-Gang Cao3 Yu-Zhong Zhang3

1 Department of Mathematics, East China Normal University, Shanghai 200062, China
2 Department of Watercraft Command，Zhenjiang Watercraft College, Zhenjiang,
Jiangsu 212003, China

3 College of Operations Research and Management Science, Qufu Normal University,
Rizhao, Shandong 276826, China

Abstract In the classical scheduling problems, it is always assumed that the processing time of
a job is fixed. In this paper, we address the scheduling with discretely compressible processing
times, i.e., the possible processing time of a job can only have finitely many possibilities. Of
course, choosing to process any job with a compressed processing time incurs a compression cost.
We consider the single machine scheduling problem with discretely compressible processing times.
The objective is to minimize makespan with the constraint of total compression cost, i.e., the total
compression cost is at most a pre-given constant number. Jobs may have different release times.
We also consider the identical-parallel-machine version with simultaneous release times. Since
they are all NP-hard, we design for the first time pseudo-polynomial time algorithms and FPTASs.
For the first problem, our main approach is dynamic programming and scaling-and-rounding; and
for the second one, our approach is dynamic programming and geometry partitioning.

Keywords scheduling; discretely compressible processing times; dynamic programming; FP-
TAS; makespan

1 Introduction
Scheduling problems with controllable processing times have their deep root in

the real world and attracted increasing attention recently. In the classical scheduling,
it is always assumed that the parameters of a job, e.g. its processing time and its
release time, are all fixed. However, in the real world, the processing of jobs is
determined not only by the machine speed, but also by other resources such as labor,
funds etc., then the parameters of a job may be not fixed. We can compress the
original processing time. Of course, choosing to process any job with a compressed
processing time incurs a compression cost.

Let {J1,J2, · · · ,Jn} denote a list of given jobs. We write SCP as an abbrevia-
tion of the scheduling problem with compressible processing times. We denote by

∗Corresponding author. Tel: 13561954187. E-mail: 52040601019@student.ecnu.edu.cn

The Sixth International Symposium on Operations Research and Its Applications (ISORA’06)
Xinjiang, China, August 8–12, 2006
Copyright © 2006 ORSC & APORC§pp. 258–263

TPC the total processing cost in SCP. There are two variants for SCP, the continuous
one and the discrete one, which are denoted by SCCP and SDCP, respectively. In
SCCP, any job J j can be processed with a processing time p j ∈ [l j,u j] and incurs a
corresponding compression cost c j(u j− p j), where c j is the cost coefficient. And in
SDCP, p j can choose a value p ji from among {p j1, p j2, · · · , p jk}, and the correspond-
ing compression cost is e ji, where 1 ≤ i ≤ k. We assume that p j1 < p j2 < · · · < p jk

and e j1 > e j2 > · · · > e jk. This assumption is sound as the more processing time we
compress the more cost we should pay.

There are the following four models for SCP:
(P1) To minimize F1 +F2;
(P2) To minimize F1 subject to F2 ≤ a;
(P3) To minimize F2 subject to F1 ≤ b;
(P4) To identify the set of Pareto-optimal points for (F1,F2).
Where F1 is the original objective function, and F2 is TPC. In the objective

function field of the notation of Graham et al.([1]), we write the above four model as
F1 + F2, F1/F2, F2/F1 and (F1,F2), respectively. Following Chen et al.([2]), we also
use cm and dm to characterize SCCP and SDCP, respectively.

There have been many results for SCCP (for a survey till 1998, see [3]), but
only four papers discussed SDCP up to now, to the best of our knowledge. As to the
P1 model, Vickson([4]) showed that the P1 model for 1|dm|Tmax is NP-hard. Deniels
and Mazzola([5]) studied an NP-hard flow shop scheduling problem in which the pro-
cessing time of each job can be varied according to the allocation of a limited amount
of resource. Chen, Lu and Tang([2]) solved the P1 models for 1|dm|∑C j and 1|d j =
D,dm|α ∑E j + β ∑Tj by formulating them as assignment problems, where D is a
large enough number. They also showed that the P1 models for 1|r j,dm|Cmax, 1|d j ≡
d,dm|Tmax and 1|d j ≡ d,dm|w∑U j are all NP-hard and designed pseudo-polynomial
time algorithms for 1|r j,dm|Cmax +T PC, 1|dm|Tmax +T PC and 1|dm|∑w jU j. Chen,
Potts and Woeginger([3]) summarized these results. Cao, Wang, Zhang, and Liu([6])
showed that the P2 model for 1|dm|Cmax is NP-hard and designed an FPTAS(Fully
Polynomial Time Approximation Scheme) for it.

In this paper, we address for the first time the P2 models for 1|r j,dm|Cmax

and Pm|dm|Cmax. Since they are all NP-hard, we design FPTASs for them. The
rest of this paper is organized as follows. Some preliminaries are given in Sec-
tion 2. In section 3, we design dynamic programming algorithm and FPTAS for
1|r j,dm|Cmax/T PC. In Section 4, we design dynamic programming algorithm and
FPTAS for Pm|dm|Cmax/T PC. Conclusion and remarks are given in Section 5.

2 Preliminaries
An algorithm A is a (1 + ε)-approximation algorithm for a minimization prob-

lem if it produces a solution which is at most (1+ε) times the optimal one. A family
of algorithms {Aε}ε is called a polynomial time approximation scheme if, for every

Scheduling with Discretely Compressible Processing Times 259

ε > 0, the algorithm {Aε} is a (1+ε)-approximation algorithm running in time poly-
nomial in the input size when ε is treated as constant. It is called a fully polynomial
time approximation scheme if the running time is also polynomial in 1/ε .

Let the jobs be indexed so that r1 ≤ r2 ≤ ·· · ≤ rn. For convenience, we as-
sume(without loss of generality)that r1 = 0. For each job J j,1 ≤ j ≤ n, we assume
p j1 > p j2 > · · ·> p jk,e j1 < e j2 < · · ·< e jk.

Lemma 1. ([6]) 1|dm|Cmax/T PC is NP-hard.

Proof. Since 1|r j,dm|Cmax/T PC and Pm|dm|Cmax/T PC both take 1|dm|Cmax/T PC as
a special case, they are NP-hard.

3 Single machine problem with nonidentical release times
Given a set of jobs {J j = (r j; p j1, p j2, · · · , p jk;e j1,e j2, · · · ,e jk) : 1 ≤ j ≤ n} and

a threshold E, we will find a schedule with the minimum makespan whose TPC is at
most E.

For any partial schedule for jobs {J1, · · · ,J j}, if its makespan is P, we say that its
state is (j,P). If (j,P) can be obtained by some partial schedule, we say it’s feasible.
Let S j denote the jth state space, i.e., the set of all the feasible states obtained by
partial schedules for jobs {J1, · · · ,J j}. For any (j,P) ∈ S j, M(j,P) represents the
minimum TPC of partial schedules whose states are (j,P).

We define rmax = max{r j : 1 ≤ j ≤ n}, Psum = ∑n
j=1 p j1. Based on the prepro-

cessing proceeds proprosed by C.K. Poon and P. Zhang([7]), for 1|r j,dm|Cmax/T PC,
if rmax ≥ Psum, an optimal sequence can be obtained easily in O(n logn) time. So we
assume that rmax < Psum in the following.

Lemma 2. The smallest-release-time first order is an optimal sequence for 1|r j,dm|
Cmax/T PC.

The result is straightforward and we thus omit the proof. So we design in the
following a dynamic programming algorithm which iteratively constructs a schedule
by assigning an unscheduled job with the smallest release time to the last position of
the current schedule.

Algorithm OMM (Optimal Minimum Makespan)
As to initialization, we let S0 = {(0,0),(0,1), · · · ,(0,rmax)} and M(0,P) = 0,

where 0≤ P≤ rmax.
In stage j, we first let S j = /0 and then for each (j− 1,P) ∈ S j−1, if P ≥ r j, we

add (j,P + p j1), (j,P + p j2), · · · , (j,P + p jk) to S j. After S j is constructed, for any
(j,P) ∈ S j, let M(j,P) = min{M(j−1,P− p ji)+ e ji : 1≤ i≤ k}.

In order to get the optimal schedule, we only have to find the minimum P such
that M(n,P)≤ E and derive a corresponding schedule whose state is (n,P) by back-
tracking.

260 The Sixth International Symposium on Operations Research and Its Applications

It’s straightforward that the time complexity is O(nk(rmax +Psum)), since rmax <
Psum, the time complexity is O(nkPsum), which is pseudo-polynomial.

Algorithm OMM solves the 1|r j,dm|Cmax/T PC problem optimally, we now ex-
tend this algorithm to an FPTAS.

We reindex all the possible processing times such that: p1 ≥ p2 ≥ ·· · ≥ pnk,
where pt = p jt it ,1 ≤ jt ≤ n,1 ≤ it ≤ k. We define: t0 = arg{pto = max{p1k, p2k, · · · ,
pnk}}. We denote OMMi as the dynamic programming algorithm OMM which
schedules jobs without processing times {p1, p2, · · · , pi}. We also denote OMM as
algorithm OMM0.

Algorithm AMM(ε) (Approximate Minimum Makespan)
Input an instance J .
For s = 0 to t0−1 do

Let Ms := max{rmax, ps+1}, M
′
s := εMs/(n+1);

Construct a rounded down instance J̃ j = {(r′j; p
′
j1, · · · , p

′
jk;e j1, · · · ,e jk) :

1≤ j≤ n}, where r
′
j = M

′
sbr j/M

′
sc, p

′
j = M

′
sbp j/M

′
sc(Take M

′
s as a unit in the rounded

down instance, i.e., scale it);
Call algorithm OMMs to find an optimal schedule π̃s for J̃ ;
If π̃s exists then obtain the corresponding schedule πs for J from π̃s

else h := s, break;
EndFor
If h = 0 then output“no feasible schedule”

else find πi0 with the minimum makespan from {πs : 0≤ s≤ h−1}.
Output πi0 as the solution to the original instance J .

Given a schedule π , we denote Cmax(π) as the makespan of π . Let π∗ = (p1x1 ,
p2x2 , · · · , pnxn) be the optimal schedule for the original problem. We suppose that
plxl = max{p1x1 , p2x2 , · · · , pnxn}, and pt1 = plxl , then pt1 ≥ ph, hence t1 ≤ h, i.e., t1−
1 ≤ h−1. We denote π̃∗ as the corresponding schedule of π∗ for the rounded down
instance. Obviously π̃∗ is a feasible schedule for J̃t1−1. We will prove: Cmax(πt1−1)≤
(1+ ε)Cmax(π∗).

Due to rounding, the start time of the last block in πt1−1 may be later than
that of the corresponding last block in π̃t1−1, and its processing time may also be
longer, but at most longer by M

′
t1−1(in the original scale). So we have Cmax(πt1−1) ≤

Cmax(π̃t1−1)+(n+1)M ′
t1−1 ≤Cmax(π̃∗)+ ε max{rmax, pt1} ≤Cmax(π∗)+ εCmax(π∗) =

(1+ε)Cmax(π∗). Since Cmax(πi0)≤Cmax(πt1−1), we have Cmax(πi0)≤ (1+ε)Cmax(π∗).
Now, let’s calculate the running time. As the main time of algorithm AMM(ε)

is calling algorithm OMM, OMM1,· · · ,OMMh−1 in every step, its running time is:
O

(
(h−1)nk

(
r
′
max +P

′
sum

)) ≤ O
(
n2k2P

′
sum

) ≤ O
(
n2k2nP

′
max

)
= O

(
n3k2

⌊
Pmax/M

′
0

⌋)
= O

(
n4k2

(
1
ε

))

It is polynomial both in n and 1
ε . According to the above analysis, we have:

Theorem 3. 1|r j,dm|Cmax/T PC admits an FPTAS.

Scheduling with Discretely Compressible Processing Times 261

4 Parallel machine problem with identical release times
Given a set of jobs {J j = (p j1, p j2, · · · , p jk,e j1,e j2, · · · ,e jk) : 1≤ j ≤ n}, a set of

identical parallel machines{M1,M2, · · · ,Mm} and a threshold H, where m is a con-
stant, each job has to be processed by exactly one machine, we will find a schedule
with the minimum makespan whose TPC is at most H.

For any partial schedule for jobs {J1, · · · ,J j}, if the load on machine Mi is ci,
let C = (c1,c2, · · · ,cm)T , which is an m−dimensional vector, we say that its state is
(j,C). If (j,C) can be obtained by some partial schedule, we say it’s feasible. Let
S j denote the jth state space, i.e., the set of all the feasible states obtained by partial
schedules for jobs {J1, · · · ,J j}. For any (j,C) ∈ S j, M(j,C) represents the minimum
TPC of partial schedules whose states are (j,C).

In stage j, we first let S j = /0. For each (j− 1,C) ∈ S j−1, 1 ≤ u ≤ k and
1 ≤ v ≤ m, we add (j,C + p juEv) to S j, where Ev is an m−dimensional unit vec-
tor whose vth component is 1. After S j is constructed, for each (j,C) ∈ S j, let
M(j,C) = min{M(j−1,C− p jiEv)+ e ji : 1≤ i≤ k}.

As to initialization, S1 = {(1, p1uEv) : 1≤ u≤ k,1≤ v≤ m} and M(1, p1uEv) =
e1u. And to get the optimal schedule, we only have to find the minimum makespan
and corresponding C, such that M(n,C) ≤ H and derive a corresponding schedule
whose state is (n,C) by backtracking.

It’s straightforward that the time complexity is O(nk(nPmax)m), which is pseudo-
polynomial.

To further get an FPTAS, we have to trim the state space S j. We denote Tj

as the new state space trimmed down. Given any accuracy parameter ε > 0, let
ε0 = ε/(2n). We partition the time horizon [0,nPmax] into intervals I0 = [0,1], I1 =
((1+ε0)0,(1+ε0)1], I2 = ((1+ε0)1,(1+ε0)2], · · · , It = ((1+ε0)t−1,(1+ε0)t], where
t = dlognPmax

1+ε0
e.

We initialize T0 = {(1, p1uEv) : 1≤ u≤ k,1≤ v≤m}. In the jth stage, 1≤ j≤ n,
we first compute S j from Tj−1 as we do in the original dynamic programming. For any
(j,C)∈ S j, if ct(1≤ t ≤m) falls into the ith time interval Ii, i≥ 1, we let c

′
t = (1+ε0)i;

and if ct = 0 or ct = 1, we simply let c
′
t = ct . Then we add the new state (j,C

′) to
Tj and let M

′(j,C
′) = M(j,C), where C

′ = (c′1,c
′
2, · · · ,c

′
m)T . Notice that c

′
t is at most

(1+ε0) times of ct and the cardinality of Tj for any 1≤ j≤ n is at most (dlognPmax
1+ε0

e)m,
which is a polynomial in the input size. We find the minimum makespan and cor-
responding C

′
such that M

′(j,C
′) ≤ H. Suppose that π is a corresponding schedule,

We will verify that π meets our demand. Notice first that π is a feasible schedule.

Theorem 4. The makespan of π is at most (1+ ε) times that of the optimal one.

Proof. π assigns the actual processing time p ja j of job J j(1 ≤ j ≤ n) to some ma-
chine. Obviously, the load on each machine may not be ci

′
but a little smaller.

Let π∗ be the optimal schedule and C∗ = (c∗1,c
∗
2, · · · ,c∗m)T . Its corresponding state

in Tn is (n,C∗′), where C∗′ = (c∗′1 ,c∗
′

2 , · · · ,c∗′n)T . We denote p∗i1oi1
and p∗isois

as the
first and the last actual processing time on machine Mi in π∗, respectively. The

262 The Sixth International Symposium on Operations Research and Its Applications

load c∗i on machine Mi in π∗ may also be smaller than c∗
′

i . However, we can re-
cursively stretch p∗jo j

(i1 ≤ j ≤ is) as little as possible into p∗
′

jo j
, such that ∑i j

j=i1 p∗
′

jo j

is an integer power of 1 + ε0 and therefore∑is
j=i1 p∗

′
jo j

= c∗
′

i . Hence: ci ≤ c
′
i ≤ c∗

′
i

= ∑is
j=i1 p∗

′
jo j
≤ (1 + ε0)(∑is−1

j=i1 p∗
′

jo j
+ p∗isois) ≤ (1 + ε0)(1 + ε0)(∑is−2

j=i1 p∗
′

jo j
+ p∗is−1ois−1

+
p∗isois

) = (1 + ε0)2(∑is−2
j=i1 p∗

′
jo j

+ p∗is−1ois−1
+ p∗isois

) ≤ ·· · ≤ (1 + ε0)(is−i1+1) ∑is
j=i1 p∗jo j

≤
(1+ ε0)n ∑is

j=i1 p∗jo j
≤ (1+ ε)c∗i .

We have established the inequality ci ≤ (1+ε)c∗i , which hold for any 1≤ i≤m,
Therefore the makespan of π is at most (1+ ε)times that of the optimal one.

It’s not hard to calculate that the running time is O(((1/ε)n log(nPmax))mnk).

Theorem 5. Pm|dm|Cmax/T PC admits an FPTAS.

5 Conclusion and remarks
In this paper, we design pseudo-polynomial time algorithms by approach of

dynamic programming and FPTASs for 1|r j,dm|Cmax/T PC and Pm|dm|Cmax/T PC.
For the first problem, our main approach is dynamic programming and scaling-and-
rounding; And for the second one, our approach is dynamic programming and ge-
ometry partitioning. Can we have the same results on uniform or unrelated parallel
machines? And various on-line models are also under investigation.

References
[1] R. L. Graham, E. L. Lawler, J. K. Lenstra and A. H. G. Rinnooy Kan. Optimiza-

tion and approximation in deterministic sequencing and scheduling. Annals of
Discrete Mathematics, 5, 287–326, 1979.

[2] Z. Chen, Q. Lu and G. Tang. Single machine scheduling with discretely con-
trollable processing times. Operations Research Letters, 21, 69–76, 1997.

[3] B. Chen, C. N. Potts and G. J. Woeginger. A review of machine scheduling:
complexity, algorithmthms and approximability. Handbook of Combinatorial
Optimization, 3, edited by D.Z. Du and P.M. Pardalos, 21–169, Kluwer Aca-
demic Publishers, 1998.

[4] R. G. Vickson. Two single machine sequencing problems involving controllable
job processing times. AIIE Transactions, 12, 258–262, 1980.

[5] R. L. Daniels, J. B. Mazzola. Flow shop scheduling with resource flexibility.
Operations Research, 42, 504–522, 1994.

[6] Z. Cao, Z. Wang, Y. Zhang and S. Liu. On several scheduling problems with re-
jection or discretely compressible processing times. Lecture Notes in Computer
Science, 3959, 90–98, 2006.

[7] C. K. Poon, P. Zhang. Minimizing makespan in batch machine scheduling. Al-
gorithmica, 39, 1–20, 2004.

Scheduling with Discretely Compressible Processing Times 263

